• 제목/요약/키워드: Rigid Link

검색결과 115건 처리시간 0.021초

관절체에 고정된 관성 센서의 위치 및 자세 보정 기법 (Pose Calibration of Inertial Measurement Units on Joint-Constrained Rigid Bodies)

  • 김신영;김혜진;이성희
    • 한국컴퓨터그래픽스학회논문지
    • /
    • 제19권4호
    • /
    • pp.13-22
    • /
    • 2013
  • 모션 캡처 장치는 자연스러운 인체 동작을 생성하는 것을 용이하게 하여 영화, 컴퓨터 게임, 컴퓨터 애니메이션 등 여러 분야에서 폭넓게 사용되고 있다. 그 중 관성 센서를 활용한 모션 캡처 장치는 보다 널리 사용되고 있는 광학 모션 캡처 장비에 비해 소요 공간과 비용 측면에서 이점을 가지고 있으나 비교적 높은 노이즈로 인해 측정 결과의 정밀도가 떨어지는 단점이 있다. 특히 관성 센서에 포함되어 중력 방향을 계측하는 가속도 센서는 센서의 선형 가속 운동으로 인해 중력 방향의 계측 정밀도가 떨어지는 문제를 갖는다. 본 논문에서는 관절체에 부착된 센서의 자세 측정 정확도를 높이기 위해 가속도 센서에서 선형 가속도 성분을 제거하는 기법을 제안한다. 아울러 센서가 부착되어 있는 관절체의 회전축 및 센서의 부착 위치를 보정하는 기법을 소개한다. 이 보정 기법은 관성 센서가 관절체의 임의의 위치와 방향으로 부착되는 것을 가능하게 한다.

슬라이딩 모드를 가진 2-자유도 제어기를 이용한 유연한 로봇 조작기의 끝점 위치 제어 (Tip Position Control of Flexible Robot Manipulators Using 2-DOF Controller with Sliding Mode)

  • 신효필;이종광;강이석
    • 제어로봇시스템학회논문지
    • /
    • 제6권6호
    • /
    • pp.471-477
    • /
    • 2000
  • The position control accuracy of a robot arm is significantly deteriorated when a long arm robot is operated at a high speed. In this case, the robot arm must be modeled as a flexible structure, not a rigid one, and its control system should be designed with its elastic modes taken into account. In this paper, the tip position control scheme of a one-link flexible manipulator using 2-DOF controller with sliding mode is presented. The robot consists of a flexible arm manufactured with a thin aluminium plate, an AC servo motor with a harmonic drive for speed reduction, an optical encoder and a CCD camera as a vision sensor for on-line measuring the tip deflection of the flexible m. Simulation and experimental results of the flexible manipulator with a proposed controller are provided to show the effectiveness of the controller.

  • PDF

근사 자코비안 연산자를 이용한 경량 매니퓰레이터의 시각 서보 제어 (Visual Servo Control of Slender Manipulators Using an Approximate Jacobian Operator)

  • 이호길;김진영
    • 제어로봇시스템학회논문지
    • /
    • 제6권12호
    • /
    • pp.1086-1092
    • /
    • 2000
  • To realize a visual servo control of slender manipulators, two problems to be solved are analysed. The stability problem on so-called noncolocation control and the infinite order problem of the real Jacobian matrix caused by the elastic deformation are discussed. By considering the dynamic relations between rigid and elastic modes, a Jacobian operator is derived and the physical meaning is also explained. Then, for practical control, a simple control scheme using an approximate Jacobian is proposed and its stable conditions are proven by means of the $L_$2$ stability theory. The scheme is structurally similar to the conventional PD control laws, but external sensors(e. g. visual sensor) are used for positioning and internal sensors for damping. A good performance is obtained via control experiments of a slender two link manipulator.

  • PDF

로봇의 최적 시간 제어에 관한 연구

  • 정년수;한창수
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2001년도 추계학술대회 논문집
    • /
    • pp.301-305
    • /
    • 2001
  • Conventionally, robot control algorithms are divided into two stages, namely, path or trajectory planning and path tracking(or path control). This division has been adopted mainly as a means of alleviating difficulties in dealing with complex, complex, coupled manipulator dynamics. The minimum-time manipulator control problem is solved for the case when the path is specified and the actuator torque limitations are known. In path planning, DP is applied to applied to find the shortest path form initial position to final position with the assumptions that there is no obstacle and that each path is straight line. In path control, the phase plane technique is applied to the minimum-time control with the assumptions that the bound on each actuator torque is a function of joint position and velocity or constant. This algorithm can be used for any manipulator that has rigid link, known dynamics equations of motion, and joint angles that can be determined at a given position on the path.

퍼지규칙에 의한 직.간접 혼합 신경망 적응제어시스템의 설계 (Design of the Combined Direct and Indirect Adaptive Neural Controller Using Fuzzy Rule)

  • 이순영;장순용
    • 한국정보통신학회논문지
    • /
    • 제4권3호
    • /
    • pp.603-610
    • /
    • 2000
  • 본 논문에서는 직접 적응제어기와 간접 적응제어기를 Lyapunov 안정도 이론에 근거하여 결합하였다. 제어기는 RBF 신경망을 이용하여 구성하였으며 하중파라미터들은 적응칙에 의하여 조정되도록 하였다. 또한 시스템의 성능에 영향을 미치는 결합 가중치는 퍼지 If-THEN 규칙을 이용하여 결정되도록 하였다. 이렇게 함으로써 직접 적응제어기와 간접 적응제어기의 장점을 지니는 직 간접 혼합 신경망 적응제어기를 구성할 수 있었다. 제안한 알고리즘의 효용성을 보이기 위하여 일축 강페 로봇 매니퓰레이터를 대상으로 시뮬레이션한 결과 만족할 만한 성능을 보였다.

  • PDF

PSC보 교량의 유한요소 모델링방법에 관한 연구 (An Improved Finite Element Modeling Technique for Prestressed Concrete Girder Bridges)

  • 김광수;박선규;김형열
    • 콘크리트학회논문집
    • /
    • 제11권5호
    • /
    • pp.33-40
    • /
    • 1999
  • An improved finite element modeling technique is proposed for the assessment of load carrying capacity of partially prestressed concrete girder bridges. Based on the finite element method of analysis, shell and frame elements are used to model the slab and girders of the superstructure, respectively. In the modeling of superstructure, the emphasis is placed on the use of rigid link between the middle surface of slab an mid-plane of girder. This paper also includes the comparision of three different equations that are used in the calculation of effective moment of inertia for the partially prestressed concrete girders. Numerical analysis is performed for the unstrengthened and strengthened bridges. The obtained results are compared with those of load test for a prototype bridge. A good agreement is achieved between the numerical solutions by using the proposed method load test results.

Robust Back-Stepping Control with Polynomial-type PD input for Flexible Joint Robot Manipulators

  • Lee, Jae-Young;Park, Jong-Hyeon
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2007년도 춘계학술대회A
    • /
    • pp.927-932
    • /
    • 2007
  • This paper proposes a robust back-stepping control with polynomial-type PD input for flexible joint robot manipulators to overcome parameter uncertainty. In the first step, a fictitious control is designed with polynomial-type PD input for the rigid link dynamic by the H-infinity control method. In second and third steps, the other fictitious control and real control are designed using saturation control and polynomial-type PD input based on the Lyapunov's second method. In each step, the designed robust inputs satisfy the L2-gain, which is equal to or less than gamma in the closed loop system. In contrast with the previous researches, the proposed method proves performance relations with PD gain from the robust gain. The performance robustness of the proposed control is verified through a 2-DOF robot manipulator with joint flexibility.

  • PDF

A V-Shaped Lyapunov Function Approach to Model-Based Control of Flexible-Joint Robots

  • Lee, Ho-Hoon;Park, Seung-Gap
    • Journal of Mechanical Science and Technology
    • /
    • 제14권11호
    • /
    • pp.1225-1231
    • /
    • 2000
  • This paper proposes a V-shaped Lyapunov function approach for the model-based control of flexible-joint robots, in which a new model-based nonlinear control scheme is designed based on a V-shaped Lyapunov function. The proposed control guarantees global asymptotic stability for link trajectory control while keeping all internal signals bounded. Since joint flexibility is used as a control parameter, the proposed control is not restricted by the degree of joint flexibility and be applied to flexibility-joint, partly-flexibility, or rigid-joint robots without modification. the effectiveness of the proposed control has been by computer simulation.

  • PDF

Open Loop Responses of Posture Complexity in Biomechanics

  • Shin, Youngkyun;Park, Gu-Bum
    • 조명전기설비학회논문지
    • /
    • 제27권8호
    • /
    • pp.42-50
    • /
    • 2013
  • The reactionary responses to control human standing dynamics were estimated under the assumption that postural complexity mainly occurs in the mid-sagittal plane. During the experiment, the subject was exposed to continuous horizontal perturbation. The ankle and hip joint rotations of the subject mainly contributed to maintaining standing postural control. The designed mobile platform generated anterior/posterior (AP) motion. Non-predictive random translation was used as input for the system. The mean acceleration generated by the platform was measured as $0.44m/s^2$. The measured data were analyzed in the frequency domain by the coherence function and the frequency response function to estimate its dynamic responses. The significant correlation found between the input and output of the postural control system. The frequency response function revealed prominent resonant peaks within its frequency spectrum and magnitude. Subjects behaved as a non-rigid two link inverted pendulum. The analyzed data are consistent with the outcome hypothesized for this study.

유연한 수평 다관절형 로봇의 진동제어 (Vibration control of a flexible SCARA type robot)

  • 용대중;임승철
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1996년도 한국자동제어학술회의논문집(국내학술편); 포항공과대학교, 포항; 24-26 Oct. 1996
    • /
    • pp.225-228
    • /
    • 1996
  • This paper concerns a SCARA type robot with the second arm flexible. Its equations of motion are derived by the Lagrangian mechanics. For controller design, the perturbation approach is taken to separate the original equations of motion into linear equations describing small perturbed motions and nonlinear equations describing purely rigid motion of the robot. To effect the desired payload motion, open loop control inputs are first determined based on the inverse dynamics of the latter. Next, in order to reduce the positional error during maneuver, an active vibration suppression is done. To this end, a feedback control is designed for robustness against disturbance on the basis of the linear equations and the LQR theory modified with a prescribed degree of stability. The numerical simulations results show the satisfactory control performance.

  • PDF