• 제목/요약/키워드: Rigid Die

Search Result 185, Processing Time 0.023 seconds

Analysis of the upsetting type process for spur gear cold forging using 3D-FEM (3차원 유한요소법을 이용한 Upsetting Type Spur Gear 냉간 단조 공정 해석)

  • Chun S.H.;Lee Y.S.;Kwon Y.N.;Lee J.H.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2004.05a
    • /
    • pp.135-138
    • /
    • 2004
  • Since the upsetting type is superior to an extrusion type to get the dimensional accuracy of cold forged spur gear, the upsetting type process far spur gear cold forging has been studied. FE analysis of upsetting type process fur spur gear cold forging was performed to investigate about flow pattern of workpiece and die stress. To analyze the elastic characteristics of die, both rigid and elastic material model were used during loading stage. Under-filled defects were detected In lower portions of spur gear forged by upsetting type in experimental. When the elastic material model for die was used, the under-filled defects could be predicted. On the other hand, if the material model of die was rigid, the defects could not been presented because the die deflection was not considered.

  • PDF

Reason of Die Fracture in Hot Forging of an Aluminum Fixed Scroll and Its Practical Measures (알루미늄 고정 스크롤 열간 단조공정의 금형 파괴 원인 및 실용적 대책)

  • Kim, Y.S.;Joun, M.S.
    • Transactions of Materials Processing
    • /
    • v.26 no.3
    • /
    • pp.156-161
    • /
    • 2017
  • In this study, the reason of die fracture occurring in hot forging of an aluminum fixed scroll was studied, based on experiments and finite element predictions. The material is assumed to be rigid-viscoplastic, and the die is rigid for the finite element predictions. The stress in the tension at the wrap root is known to cause brittle fracture, and the increase in the tensile stress is owing to the unbalanced filling of material into the die cavities between both sides of the warp. Based on the empirical and numerical achievements, the effects of geometrical parameters of the material on the die fracture were examined to find practical measures for elongated die life. It has been shown from the parametric study that the material with the optimized trapezoidal cross-section, which can be easily made during cutting or the optimized cylindrical billet with its eccentric placement in the die cavity, can considerably reduce the magnitude of the tensile stress around the die corner fractured, indicating that economical manufacturing with reduced number of stages and elongated die life can be realized at once using the optimized practical initial material.

A Studyon the Drawing of Rectangular Rod from Round Bar by using Rigid Plastic FEM and Neural Network (강소성 유한요소법과 신경망을 이용한 직사각재 인발공정에 관한 연구)

  • Kim, Y.C.;Choi, Y.;Kim, B.M.;Choi, J.C.
    • Transactions of Materials Processing
    • /
    • v.8 no.4
    • /
    • pp.331-339
    • /
    • 1999
  • In this study, to analyze the shaped drawing process from round bar, the practical conical die with considering die radius and bearing was defined by a mathematical expression, and also a simple technique for initial mesh generation to the shaped drawing process was proposed. The drawing of rectangular section from round bar, one of the shaped drawing process, has been simulated by using non-steady state 3D rigid plastic finite element method in order to evaluate the influence of semi-die angle and reduction in area to corner filling. Other process variables such as friction constant, rectangular ratio, die radius and bearing length were fixed during the simulation. An artificial neural network has been introduced to obtain the optimal process conditions which gave rise to a fast simulation.

  • PDF

Finite Element Analysis of a Cold forging Process Having a Floating Die (부유금형을 가진 냉간단조 공정의 유한요소해석)

  • 전만수
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1999.03b
    • /
    • pp.103-107
    • /
    • 1999
  • In this paper, a computer simulation technique for the forging process having a floating die is presented. The penalty rigid-plastic finite element method is employed together with an iteratively force-balancing method, in which the convergence is achieved when the floating die part is in force equilibrium within the user-specified tolerance. The force balance is controled by adjusting the velocity of the floating die in an automatic manner. An application example of a three-stage cold forging process is given.

  • PDF

Design of the Bead Force and Die Shape in Sheet Metal Forming Processes Using a Rigid-plastic Finite Element Method and Response Surface Methodology (강소성 유한요소법과 반응표면분석법을 이용한 박판성헝 공정에서의 비드력 및 다이형상의 설계)

  • Kim, S.H.;Huh, H.
    • Transactions of Materials Processing
    • /
    • v.9 no.3
    • /
    • pp.284-292
    • /
    • 2000
  • Optimization of the process parameters is carried out for process design in sheet metal forming processes. The scheme incorporates with a rigid-plastic finite element method for the deformation analysis and response surface methodology for the optimum searching of process parameters. The algorithm developed is applied to design of the draw bead force and the die radius in deep drawing processes of rectangular cups. The present algorithm shows the capability of designing process parameters which enable the prevention of the weak part of fracture during processes.

  • PDF

A Three-Dimensional Finite Element Analysis of Hot Square Die Extrusion Considering the Effect of Die Bearing (금형 베어링 효과를 고려한 평금형 열간 압출의 3차원 유한요소해석)

  • 강연식;양동열
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1996.10a
    • /
    • pp.185-191
    • /
    • 1996
  • The Variation of die bearing is primary way to control the metal flow in hot square die extrusion process. Finite element computations are carried out to assess the influence of die bearing on metal flow and state variables. The finit element method is developed based on ALE description for a rigid-viscoplastic material. Since thermal state computational example, hot square die extrusion with varied die bearing lengths has been analyzed for the profile of a L-section.

  • PDF

Finite element Analysis for the Lamination Process of a Motor Core using Progressive Dies (순차이송 금형을 사용한 모터코어 적층과정의 유한요소해석)

  • Park, K.;Lee, I.S.;Jang, K.J.;Choi, S.R.
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2000.04a
    • /
    • pp.618-623
    • /
    • 2000
  • In order to increase the porductivity of electrical parts, manufacturing processes using progressive dies have been widely used in the industry. Motor cores have been fabricated using progressive stacking die with the lamination procedure for better electro-magnetic property. for the proper design of a process, a prediction of the process is required to obtain many design parameters. In this work, rigid-plastic finite element analysis is carried out in order to simulate the lamination this work, rigid-plastic finite element analysis is carried out in order to simulate the lamination process of the motor core. The effects of the embossing depth and the amount of deviation are investigated and compared with experiments. The forming process can then be predicted successfully from the results of analyses, which enables to design appropriately the die and the process.

  • PDF

A Study on the Forming Characteristics of Radial Extrusions (레이디얼압출의 성형특성에 관한 연구)

  • 이수형;황병복
    • Transactions of Materials Processing
    • /
    • v.8 no.6
    • /
    • pp.604-611
    • /
    • 1999
  • This paper is concerned with the family of parts that generally feature a central hub with radial protrusions. As opposed to conventional forward and backward extrusion, in which the material flows in a direction parallel to that of the punch or die motion, the material flows perpendicular to the punch motion in radial extrusion. Three variants of radial extrusion of a collar or flange are investigated. Case I involves forcing a cylindrical billet against a flat die, Case II involves deformation against a stationary punch recessed in the lower die, and Case III involves both the upper and lower punches moving together toward the center of the billet. Extensive simulational work is performed with each case to see the process conditions in terms of forging load, balanced and symmetrical flow in the flange. Also, the effect of the gap size and die corner radii to the material flow are investigated. In this study, the forming characteristics of radial extrusion will be considered by comparing the forces, shapes etc. The design factors during radial extrusion are investigated by the rigid-plastic FEM simulation.

  • PDF

Rigid-Plastic Finite Element Analysis for the Lamination Process of a Precision Motor Core using Progressive Dies (순차이송 금형을 사용한 정밀 모터코어 적층공정의 강소성 유한요소해석)

  • Park, Keun;Choi, Sang-Ryun
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.10 no.5
    • /
    • pp.45-52
    • /
    • 2001
  • In order to increase the productivity of electrical parts, manufacturing processes using progressive dies have been widely used in the industry. Motor cores have been fabricated using progressive stacking die with the lamination procedure for better electro-magnetic property. For the proper design off process, a prediction of the process is required to obtain many design parameters. In this work, rigid-plastic finite element analysis is carried out in order to simulate the lamination process of the motor core. The effects of the embossing depth, the amount of deviation, and the number of stacked sheets are investigated and compared with experiments. The forming process can then be predicted successfully from the results of analyses, which enables an appropriate design to be made for the die and the process.

  • PDF