• Title/Summary/Keyword: Rigid Die

Search Result 185, Processing Time 0.025 seconds

A Three-Dimensional Rigid-Viscoplastic Finite Element Analysis of a Hot Square Die Extrusion with Flow Guide (플로우가이드를 고려한 평금형 열간 압출의 3차원 강-점소성 유한요소해석)

  • 강연식;양동열
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1996.03b
    • /
    • pp.138-144
    • /
    • 1996
  • In square die extrusion, flow guide and ide land play important roles for controlling the metal flow in die design. In the present work, the flow guide and the die land are considered for the die construction. Based on ALE description , rigid-viscoplastic finite element analysid is carried out to assess the effects of process and die design parameters. The thermal state affects greatly the product quality in hot extrusion. in the present work, the temperature distribution is also analyzed in theframwork of rigid-viscoplastic finite element computation. As a computational example, hot square die extrusion with flow guide and die land has been analyzed for the profile of a H section.

  • PDF

Finite Element Analysis of a Cold Forging Process Having a Floating Die (부유금형을 가진 냉간단조 공정의 유한요소해석)

  • 류찬호;전만수
    • Transactions of Materials Processing
    • /
    • v.9 no.2
    • /
    • pp.159-164
    • /
    • 2000
  • In this paper, a computer simulation technique for the forging process having a floating die is presented. The penalty rigid-plastic finite element method is employed together with an iteratively force-balancing method, in which the convergence is achieved when the floating die part is in force equilibrium within the user-specified tolerance. The force balance is controled by adjusting the velocity of the floating die in an automatic manner. An application example of a three-stage cold forging process is given.

  • PDF

Three-Dimensional Rigid-Plastic Finite Element Analysis of Nonsteady State Shaped Drawing Process (비정상상태 이형재 인발공정의 3차원 강소성 유한요소해석)

  • Kim, Ho-Chang;Choi, Young;Kim, Byung-Min
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.15 no.7
    • /
    • pp.119-128
    • /
    • 1998
  • In this paper, nonsteady state shaped drawing process has been investigated using the three-dimensional rigid-plastic finite element method. In order to analyze the shaped drawing process, a method to define straight converging die considering straight die part, die radius part and bearing part has been proposed. In addition, the modeling of initial billet and the generation procedure of mesh system have been suggested. The three-dimensional rigid-plastic finite element simulation has been performed for a square sectional drawing process and its result has been confirmed in comparison with the existing experimental one. Also, for the same process conditions, the effect of perimeter ratio in the shaped drawing process has been investigated.

  • PDF

A Study on the Development of Cathode-Ray Tube Die Using Hot forging (열간단조를 이용한 브라운관 금형의 개발에 관한 연구)

  • 차도진;조종래;배원병;황남철
    • Transactions of Materials Processing
    • /
    • v.9 no.5
    • /
    • pp.533-538
    • /
    • 2000
  • This study has been carried out to develop a CRT die using hot forging. The conventional CRT die made by casting has defects such as void and inclusion. These defects of the cast die make micro-spots on the surface of the CRT which affect the quality of the final product. So, a hot forging process is developed to avoid these defects of CRT die by the model material test and the rigid-plastic FEM. Firstly, model material tests are carried out with plasticine billets in order to investigate the material flow pattern in the die cavity and to get the reasonable initial values for designing the preform in the FE simulation. And then a finite element analysis has been performed to Predict the preform and the forging load of a CRT die. We also suggest an integrated die-set which combines two die-sets into one die-set to save manufacturing time and cost in case of similar die-size.

  • PDF

A Study on Life Estimation of a Forging Die (단조 금형의 수명 평가에 관한 연구)

  • Choi, C.H.;Kim, Y.J.
    • Transactions of Materials Processing
    • /
    • v.16 no.6
    • /
    • pp.479-487
    • /
    • 2007
  • Die life is generally estimated taking failure life and wear amount into consideration. In this study, the forging die life was investigated considering both of these two factors. The fatigue life prediction for the die was performed using the stress-life method, i.e. Goodman's and Gerber's equations. The Archard's wear model was used in the wear life simulation. These die life prediction techniques were applied to the die used in the forging process of the socket ball joint of a transportation system. A rigid-plastic finite element analysis for the die forging process of the socket ball was carried out and also the elastic stress analysis for the die set was performed in order to get basic data for the die fatigue life prediction. The wear volume of the die was measured using a 3-dimensional measurement apparatus. The simulation results were relatively in good agreement with the experimental measurements.

Rigid-Plastic Finite Element Analysis for Forging Process Design of a Hollow Flange

  • Bae, Sung-Woo;Kim, Yohng-Jo
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.3 no.1
    • /
    • pp.59-65
    • /
    • 2004
  • Hollow flange-shaped parts rue widely used in transportation systems. For good quality products, in general, design of preforms and die shapes for a progressive forging process is an important issue. For the design of die shapes for the forging process of a hollow flange, computer simulations Were earned out using the rigid-plastic finite element method. Forging defects like folding were seen in the vicinity of die corners at the typical shape ratios of upper and lower dies Die shape ratios at which the forging defect could occur during the extrusion-forging process of the hollow flange were investigated. The results might be efficiently used for the proper design of perform shapes, die shapes, and forging processes.

  • PDF

Investigation into Effect of the Shape of Lip Die on Flow Characteristic in the Extrusion of Plate Wider than the Diameter of the Round Billet Using Lip Die (립(Lip) 금형을 이용한 원형 빌렛 직경 이상의 판재 압출에서 금형 형상이 금속 유동에 미치는 영향에 대한 연구)

  • 김경진;이창희;양동열
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2003.10a
    • /
    • pp.265-268
    • /
    • 2003
  • In the extrusion process, the working material is forced to flow through a die with the desired profile. In general, the width of an extruded section is limited to about an inch less than the diameter of the round billet. But through the lip die, material is spreaded to produce a wider extruded section than the diameter of round billet. In this study, the extrusion process of an aluminum plate using the lip die is investigated. The width of the extruded plate is 450mm that is formed from the round billet with a diameter of 250mm. The flow characteristic through the lip die is considered to produce the wide-extruded plate with a small billet using rigid plastic FE analysis. Based on the result of FE analysis, new designs of lip die are proposed.

  • PDF

Optimization of the Shape of Lip Die in the Extrusion of Plate Wider than the Diameter of the Round Billet using a Lip Die (립(Lip)금형을 이용한 원형 빌렛 직경 이상의 판재압출에서 립금형 형상의 최적화)

  • Kim K.J.;Lee S.R.;Yang D.Y.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2004.10a
    • /
    • pp.115-119
    • /
    • 2004
  • In the extrusion process, the working material is forced to flow through a die with the desired profile. In general, the width of an extruded section is limited to about an inch less than the diameter of the round billet. But through the lip die, material is spreaded to produce a wider extruded section than the diameter of round billet. In this study, the extrusion process of an aluminum plate using the lip die is investigated. The width of the extruded plate is 450mm that is formed from the round billet with a diameter of 250mm. The flow characteristic through the lip die is considered to produce the wide-extruded plate with a small billet using rigid plastic FE analysis. Based on the result of FE analysis, an optimized design of the lip die is then proposed.

  • PDF

Forming Analysis for Automotive Fender Panel Considering Die Deformation (금형 변형을 고려한 자동차용 펜더 패널 성형해석)

  • Song M. J.;Lee S. Y.;Keum Y. T.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2005.05a
    • /
    • pp.82-85
    • /
    • 2005
  • In order to see the effect of die deformation on the forming of sheet metal, the draw-ins, strains, and springbacks of an automotive fender panels are numerically simulated considering the die deformation found by the simultaneous structural analysis of press and dies. The comparison of the forming analysis result between the rigid die and the deformed die layout shows that the deformed tool provides more accurate forming and springback result.

  • PDF

Determination of Elastic Recovery for Axi-Symmetric Forged Products (축대칭 단조공정에서 최종제품의 탄성회복에 관한 해석)

  • Kim, T.H.;Kim, D.J.;Park, J.C.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.13 no.9
    • /
    • pp.165-173
    • /
    • 1996
  • The dimensional accuracy of a final product is mainly affected by elastic die deformation during the forging and elastic recovery after the ejection in cold forging process. The investigations on elastic recovery are not so much as those of elastic die deformation. The elastic recovery can be determined by using the elastic-plalstic finite element analysis, but, this method has some limits such as poor conver- gence and long computational time, etc. In this paper, a theoretical analysis for predicting the elastic recovery of a final product in axi-symmetric forging process by using the rigid-plastic finite element method is presented. The rigid-plastic finite element analysis of a cold forward extrusion process involving loading, ejecting process is accomplished by rigid-plastic FE code, DEFORM. The effect of elastic die deformation on the final product dimenmsion is also considered. The calculated elastic recovery is compared is compared with the analysis result of elastic-plastic FE code. ABAQUS.

  • PDF