• Title/Summary/Keyword: Rig

Search Result 734, Processing Time 0.031 seconds

Offshore Platform Installation Simulation Using Real-Time Maneuvering and Operation Simulator (Real-Time 조종 및 작업 시뮬레이터를 활용한 해양구조물 설치 작업 시뮬레이션)

  • Jonghyeon Lee;Solyoung Han;Dong-Woo Park
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.29 no.1
    • /
    • pp.67-75
    • /
    • 2023
  • In this study, the dynamic characteristics of an offshore platform being installed and physical phenomena are analyzed from the perspective of interaction between operation and maneuvering simulation using a real-time Maneuvering & Operation simulator of Shipbuilding & Marine Simulation Center at Tongmyong University. It was simulated to install the semi-submersible drilling rig moored by 8 mooring lines according to a scenario that is similar to it on the real sea, and 4 tug boats for position keeping of the rig and an offshore support vessel for hook-up of the mooring lines were operated. During the simulation, the motion, trajectory, tension of the objects were output in real time, and they were analyzed at each work procedure. This study about the simultaneous simulation of operation and maneuvering showed the detailed motion of the offshore platform and ships on the operation procedure and the interaction between operation and maneuvering in specific environment condition. Also, it confirmed that the simulation can be utilized to determine the possibility of offshore platform installation in specific situations.

Measurement and Discrimination Method for the Evaluation of Aero-Pulsation Noise Generated by the Turbocharger System (터보차저의 공기맥동음 평가를 위한 측정 및 판별법)

  • Kim, Jae-Heon;Lee, Jong-Kyu
    • The Journal of the Acoustical Society of Korea
    • /
    • v.26 no.7
    • /
    • pp.361-365
    • /
    • 2007
  • Aero-pulsation noise, generally caused by geometric asymmetry of a rotating device, is one of considerable sources of annoyance in passenger cars using the turbocharged diesel engine. Main source of this noise is the compressor wheel in the turbocharger system, and can be reduced by after-treatment devices such as silencers, but which may increase the manufacturing cost. More effective solution is to improve the geometric symmetry over all, or to control the quality of components by sorting out inferior ones. The latter is more simple and reasonable than the former in view of manufacturing. Thus, an appropriate discrimination method should be needed to evaluate aero-pulsation noise level at the production line. In this paper, we introduce the accurate method which can measure the noise level of aero-pulsation and also present its evaluation criteria. Besides verifying the reliability of a measurement system - a rig test system-, we analyze the correlation between the results from rig tests and those from vehicle tests. The gage R&R method is carried out to check the repeatability of measurements over 25 samples. From the result, we propose the standard specification which can discriminate inferior products from superior ones on the basis of aero-pulsation noise level.

A Study on Heat Exchange Efficiency of EGR Cooler for Diesel Hybrid (하이브리드 디젤엔진용 EGR 쿨러의 열교환 효율 연구)

  • Lee, Joon;Moon, Jeon-Il;Kim, Yeon-Hee
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.17 no.2
    • /
    • pp.159-164
    • /
    • 2009
  • Cooled EGR system is an effective method for the reduction of $NO_x$ emission and PM emission from a diesel engine. Proper choice of wavy cooling fins and gas tubes is a key factor of cooled EGR system. As a part of solutions for energy crisis and environmental problems, hybrid vehicles mounted with diesel engines are under development globally. This study investigates the cooled EGR systems for hybrid diesel engine with the specifications of both optimized wavy cooling fins and improved shape of structure to verify the heat exchange efficiency, outlet temperature and gas pressure drop of cooler by means of numerical analyses and rig performance tests. The output of this study will be applied to a 2.0L hybrid diesel engine which is being developed for domestic and overseas market.

System Architecture for Digital Hologram Video Service (디지털 홀로그램의 비디오 서비스를 위한 시스템 설계)

  • Lee, Yoon-Hyuk;Seo, Young-Ho;Kim, Dong-Wook
    • Journal of Broadcast Engineering
    • /
    • v.19 no.5
    • /
    • pp.590-605
    • /
    • 2014
  • The purpose of this paper is to propose a service system for a digital hologram video, which has not been published yet. This system assumes the existing service framework for 2-dimensional or 3-dimensional image/video, which includes data acquisition, processing, transmission, reception, and reconstruction. This system includes acquisition of color and depth image pairs from a image acquisition system with vertical rigs, rectification of acquired image pairs and generating digital hologram. Also it is designed to reduce the CGH (computer-generated hologram) generation time to 1/3. It also includes some additional and optional functions such as watermarking, compression, and encryption.

Development of Numerical Model and Experimental Apparatus for Analyzing the Performance of a Ball Valve used for Gas Pipeline in Permafrost Area (극한지 자원이송망 볼밸브 수치모델 및 성능평가장치 개발)

  • Lee, Sang Moon;Jang, Choon Man
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.25 no.5
    • /
    • pp.550-559
    • /
    • 2014
  • Hydraulic performance of the 1 inch ball valve have been analyzed based on the three-dimensional Reynolds-averaged Navier-Stokes analysis and an experiment. The experimental test rig of the 1 inch ball valve has been developed to investigate pressure drop for the 1 inch ball valve. The numerical model, which has reliability and effectiveness, has been constructed through the grid dependency test and validation with the results of the experiment. Shear stress transport turbulence model has been used to enhance an accuracy of the turbulence prediction in the pipeline and ball valve, respectively. Effects of the ball valve angle on the flow characteristics and friction performance have been evaluated.

Low Frequency Roll Motion of a Semi-Submersible Moored in Irregular Waves

  • Hong, Yong-Pyo;Choi, Yong-Ho;Lee, Dong-Yeon;Lee, Wang-Keun
    • Journal of Ship and Ocean Technology
    • /
    • v.11 no.3
    • /
    • pp.1-13
    • /
    • 2007
  • A semi-submersible drilling rig is regarded as one of the typical offshore structures operated in the field with moderate environments such as the Gulf of Mexico, Brazil, and West Africa. Its typical roll and pitch natural periods are around 30 seconds, which avoids prevailing regions of the wave energy spectrum, and their responses in waves are quite acceptable for common operation conditions. But large roll and pitch motions can be induced by wave difference frequency energy spectrum if the metacentric heights of a semi-submersible decrease to small values in some loading conditions, and it is because the roll and pitch natural periods increase and approach to the region where the spectral density of the low frequency wave drift moment has significant value. This paper describes the low frequency roll motion of a semi-submersible that are excited by the wave 2nd order difference frequency energy by a series of model experiments. From the model tests with several different initial metacentric heights (GM), it was observed that a semi-submersible can experience large roll motion due to the wave group spectrum.

Estimation of Pull-out force by using modified Direct Shear Apparatus (개설된 직접전단시험기(CNS)를 이용한 보강재의 인발력 추정)

  • 유병선;이학무;장기태;한희수
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2003.06a
    • /
    • pp.145-154
    • /
    • 2003
  • When a nail pulled out in dense, granular soil, the soil in the vicinity of the nail tends to dilate, but its dilatancy results in a normal stress concentration at the soil/nail interface, thereby increasing the pull-out resistance of the inclusion. It is thought to be occurring within the resistance zone where the soil mass is at stationary state and the reinforcement are held in position by the soil, due to the friction or bond. In this paper, A series of direct shear and interface tests were conducted by using so called‘Constant Normal Stiffness Test Apparatus’which was modified and improved from the conventional direct shear box test rig. Unlikely the normal shear box test, this enables to simulate the different constraint effects of surrounding soil during shear under the conditions of constant stress and volume, constant normal stiffness. The aim of the research programme is to get better understanding of pull-out bond mechanism, thus to explore the possibility of evaluating the pull-out bond capacity of soil/reinforcement at the preliminary design stage from the laboratory test.

  • PDF

Effects of Test Temperature on the Reciprocating Wear of Steam Generator Tubes

  • Hong, J.K.;Kim, I.S.
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2002.10b
    • /
    • pp.379-380
    • /
    • 2002
  • Steam generators (S/G) of pressurized water reactors are large heat exchangers that use the heat from the primary reactor coolant to make steam in the secondary side for driving turbine generators. Reciprocating sliding wear experiments have been performed to examine the wear properties of Incoloy 800 and Inconel 690 steam generator tubes in high temperature water. In present study, the test rig was designed to examine the reciprocating and rolling wear properties in high temperature (room temperature - $300^{\circ}C$) water. The test was performed at constant applied load and sliding distance to investigate the effect of test temperature on wear properties of steam generator tube materials. To investigate the wear mechanism of material, the worn surfaces were observed using scanning electron microscopy. At $290^{\circ}C$, wear rate of Inconel 690 was higher than that of Incoloy 800. It was assumed to be resulted from the oxide layer property difference due to the a\loy composition difference. Between 25 and $150^{\circ}C$ the wear loss increased with increasing temperature. Beyond $150^{\circ}C$, the wear loss decreased with increasing temperature. The wear loss change with temperature were due to the formation of wear protective oxide layer. From the worn surface observation, texture patterns and wear particle layers were found. As test temperature increased, the proportion of particle layer increased.

  • PDF

A Study on the Design of Small-Scaled Derailment Simulator considering Similarity Rules (상사법칙을 고려한 소형탈선시뮬레이터 설계에 관한 연구)

  • Eom, Beom-Gyu;Lee, Se-Yong;Oh, Se-Been;Kang, Bu-Byoung;Lee, Hi-Sung
    • Proceedings of the KSR Conference
    • /
    • 2011.05a
    • /
    • pp.1085-1091
    • /
    • 2011
  • The dynamic stability of railway vehicle has been one of the important issues in railway safety. The dynamic simulator has been used in the study about the dynamic stability of railway vehicle and wheel/rail interface. Especially, a small scale simulator has been widely used in the fundamental study in the laboratory instead of full scale roller rig which is not cost effective and inconvenient to achieve diverse design parameters. But the technique for the design of the small scale simulator for the fundamental study about the dynamic characteristics of the wheel-rail system and the bogie system has not been well developed in Korea. Therefore, the research about the development of the small scale simulator and the bogie has been conducted. This paper presents the design of the small-scaled derailment simulator and the example design case of a small scale bogie. The simulator could be used in the study about the effect of diverse parameters such as attack angle, wheelbase and cant on dynamic behavior of the bogie and the safety parameter such as derailment coefficient and critical speed.

  • PDF

A Running Stability Test of 1/5 Scaled Bogie Using Small Scale Derailment Simulator (소형탈선시뮬레이터를 이용한 1/5 축소대차의 주행안정성 시험)

  • Eom, Beom-Gyu;Lee, Se-Yong;Lee, Young-Yeob;Kang, Bu-Byoung;Lee, Hi-Sung
    • Proceedings of the KSR Conference
    • /
    • 2011.10a
    • /
    • pp.2600-2608
    • /
    • 2011
  • The dynamic stability of railway vehicle has been one of the important issues in railway safety. The dynamic simulator has been used in the study about the dynamic stability of railway vehicle and wheel/rail interface. Especially, a small scale simulator has been widely used in the fundamental study in the laboratory instead of full scale roller rig which is not cost effective and inconvenient to achieve diverse design parameters. But the technique for the design of the small scale simulator for the fundamental study about the dynamic characteristics of the wheel-rail system and the bogie system has not been well developed in Korea. Therefore, the research about the development of the small scale simulator and the bogie has been conducted. As this paper, To predict the dynamic behavior of railway vehicle, we studied running stability test of 1/5 scaled bogie that similarity laws is applied using small scale derailment simulator. For the operation of the small scale derailment simulator, it is required to investigate the performance and characteristics of the system. This could be achieved by a comparative study between an analysis and an experiment. This paper presented the analytical model which could be used for verifying of the test results and understanding of the physical behavior of the dynamic system comprising the small scale bogie and the simulator.

  • PDF