• 제목/요약/키워드: Riemannian metric

검색결과 153건 처리시간 0.023초

HARMONIC HOMOMORPHISMS BETWEEN TWO LIE GROUPS

  • Son, Heui-Sang;Kim, Hyun Woong;Park, Joon-Sik
    • 호남수학학술지
    • /
    • 제38권1호
    • /
    • pp.1-8
    • /
    • 2016
  • In this paper, we get a complete condition for a group homomorphism of a compact Lie group with an arbitrarily given left invariant Riemannian metric into another Lie group with a left invariant metric to be a harmonic map, and then obtain a necessary and sufficient condition for a group homomorphism of (SU(2), g) with a left invariant metric g into the Heisenberg group (H, $h_0$) to be a harmonic map.

CRITICAL POINT METRICS OF THE TOTAL SCALAR CURVATURE

  • Chang, Jeong-Wook;Hwang, Seung-Su;Yun, Gab-Jin
    • 대한수학회보
    • /
    • 제49권3호
    • /
    • pp.655-667
    • /
    • 2012
  • In this paper, we deal with a critical point metric of the total scalar curvature on a compact manifold $M$. We prove that if the critical point metric has parallel Ricci tensor, then the manifold is isometric to a standard sphere. Moreover, we show that if an $n$-dimensional Riemannian manifold is a warped product, or has harmonic curvature with non-parallel Ricci tensor, then it cannot be a critical point metric.

YANG-MILLS CONNECTIONS ON A COMPACT CONNECTED SEMISIMPLE LIE GROUP

  • Park, Joon-Sik
    • East Asian mathematical journal
    • /
    • 제26권1호
    • /
    • pp.75-79
    • /
    • 2010
  • Let G be a compact connected semisimple Lie group, g the Lie algebra of G, g the canonical metric (the biinvariant Riemannian metric which is induced from the Killing form of g), and $\nabla$ be the Levi-Civita connection for the metric g. Then, we get the fact that the Levi-Civita connection $\nabla$ in the tangent bundle TG over (G, g) is a Yang-Mills connection.

Scalar curvatures of invariant metrics

  • Park, Joon-Sik;Oh, Won-Tae
    • 대한수학회지
    • /
    • 제31권4호
    • /
    • pp.629-632
    • /
    • 1994
  • Let (M, g) be a Riemannian manifold. The relation between a (pointwise) conformal metric of the metric g and the scalar curvature of this new metrics is investigated by Kazdan, Warner and Schoen (cf. [1, 4]).

  • PDF

A REMARK ON STATISTICAL MANIFOLDS WITH TORSION

  • Hwajeong Kim
    • Korean Journal of Mathematics
    • /
    • 제31권2호
    • /
    • pp.133-137
    • /
    • 2023
  • Consider a Riemannian manifold M equipped with a metric g. In this article, we study a notion for statistical manifolds (M, g, ∇), which can have a nonzero torsion, abbreviated to SMT. Then it turns out that the tensor fields ∇g and ${\tilde{\nabla}}g$ obtained from two different SMT-connections are different.

LIGHTLIKE HYPERSURFACES OF AN INDEFINITE TRANS-SASAKIAN MANIFOLD WITH AN (ℓ, m)-TYPE CONNECTION

  • Jin, Dae Ho
    • 대한수학회지
    • /
    • 제55권5호
    • /
    • pp.1075-1089
    • /
    • 2018
  • We define a new connection on semi-Riemannian manifolds, which is a non-symmetric and non-metric connection. We say that this connection is an (${\ell}$, m)-type connection. Semi-symmetric non-metric connection and non-metric ${\phi}$-symmetric connection are two important examples of this connection such that (${\ell}$, m) = (1, 0) and (${\ell}$, m) = (0, 1), respectively. In this paper, we study lightlike hypersurfaces of an indefinite trans-Sasakian manifold with an (${\ell}$, m)-type connection.

LIGHTLIKE HYPERSURFACES OF AN INDEFINITE KAEHLER MANIFOLD WITH A SYMMETRIC METRIC CONNECTION OF TYPE (ℓ, m)

  • Jin, Dae Ho
    • 대한수학회보
    • /
    • 제53권4호
    • /
    • pp.1171-1184
    • /
    • 2016
  • We define a new connection on semi-Riemannian manifolds, which is called a symmetric connection of type (${\ell}$, m). Semi-symmetric connection and quarter-symmetric connection are two examples of this connection such that $({\ell},m)=(1,0)$ and $({\ell},m)=(0,1)$ respectively. In this paper, we study lightlike hypersurfaces of an indefinite Kaehler manifold endowed with a symmetric metric connection of type (${\ell}$, m).

LIGHTLIKE HYPERSURFACES OF AN INDEFINITE GENERALIZED SASAKIAN SPACE FORM WITH A SYMMETRIC METRIC CONNECTION OF TYPE (ℓ, m)

  • Jin, Dae Ho
    • 대한수학회논문집
    • /
    • 제31권3호
    • /
    • pp.613-624
    • /
    • 2016
  • We define a new connection on a semi-Riemannian manifold. Its notion contains two well known notions; (1) semi-symmetric connection and (2) quarter-symmetric connection. In this paper, we study the geometry of lightlike hypersurfaces of an indefinite generalized Sasakian space form with a symmetric metric connection of type (${\ell}$, m).

WEAKLY BERWALD SPACE WITH A SPECIAL (α, β)-METRIC

  • PRADEEP KUMAR;AJAYKUMAR AR
    • 호남수학학술지
    • /
    • 제45권3호
    • /
    • pp.491-502
    • /
    • 2023
  • As a generalization of Berwald spaces, we have the ideas of Douglas spaces and Landsberg spaces. S. Bacso defined a weakly-Berwald space as another generalization of Berwald spaces. In 1972, Matsumoto proposed the (α, β) metric, which is a Finsler metric derived from a Riemannian metric α and a differential 1-form β. In this paper, we investigated an important class of (α, β)-metrics of the form $F={\mu}_1\alpha+{\mu}_2\beta+{\mu}_3\frac{\beta^2}{\alpha}$, which is recognized as a special form of the first approximate Matsumoto metric on an n-dimensional manifold, and we obtain the criteria for such metrics to be weakly-Berwald metrics. A Finsler space with a special (α, β)-metric is a weakly Berwald space if and only if Bmm is a 1-form. We have shown that under certain geometric and algebraic circumstances, it transforms into a weakly Berwald space.