• Title/Summary/Keyword: Ridged Aperture

Search Result 8, Processing Time 0.023 seconds

Equivalent Circuit Analysis of a Rectangular Waveguide Probe with H-type Small Aperture (H-형태 소형 개구를 갖는 도파관 탐침의 등가회로 해석)

  • Ko, Ji-Hwan;Cho, Young-Ki
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.25 no.12
    • /
    • pp.1300-1305
    • /
    • 2014
  • Equivalent circuits for the waveguide probe with H-shaped small aperture, as a key ingredient of near field microwave microscope, is described along with a working principle of the probe. Small rectangular or circular aperture in comparison with the wavelength behaves like the inductive element. So adding the ridged structure (corresponding to capacitive component) to the small aperture allows the transmission resonance to occur. For verification, we represents the equivalent circuit descriptions for the two types, ridged aperture and cavity types. The values of obtained by use of the equivalent circuit approaches are compared with those obtained by use of the available numerical software. The results are also experimentally verified.

Design of the Near Field Microwave Guide Type of Probe Having Enhanced High Transmission Efficiency and Smaller Beam Spot Area (고 투과 효율과 소형 빔 스팟 면적을 갖는 근접장 마이크로웨이브 도파관 탐침의 설계)

  • Ko, Ji-Hwan;Cho, Young-Ki
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.26 no.12
    • /
    • pp.1058-1063
    • /
    • 2015
  • In this article, we propose a near field microwave scanning probe structure in which two short conducting rods are attached to the center of the ridged(H-type) aperture, thereby reducing significantly the beam spot area while maintaining the high transmission efficiency through the output coupling H-type(ridged) aperture. Here the two short parallel conducting rods seem to play an important role of concentrating the transmitted electromagnetic energy through the H-type aperture and so reducing the beam area for high resolution. For validation of the proposed theory, the near field waveguide probe is fabricated according to the simulated results and its return loss characteristics versus frequencies are measured. The comparison between theory and experiment is seen to be in good agreements.

General Theory for Enhancing the Transmission Efficiency through Small Apertures (소형 개구의 투과효율 향상을 위한 일반 이론)

  • Cho, Young-Ki
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.25 no.11
    • /
    • pp.1113-1120
    • /
    • 2014
  • In this paper, general methods for enhancing the transmission efficiency through the small subwavelength aperture in an infinite conducting plane are considered first by use of the transmission-resonant aperture like the ridged circular aperture structure, second by employing the transmission-resonant cavity structure. In particular, the maximum transmission cross section is found to be $\frac{2G{\lambda}^2}{4{\pi}}[m^2]$ for the two structures, where G is the gain of the aperture in the output half space. As experimental works, the impedance matching characteristics are investigated for the cases that above two structures are incorporated as a potential near field microscopic probe in the waveguide end. As a complementary problem to the above transmission-resonant aperture problem, some discussions are also given on the scattering resonance by the scattering object much smaller than the wavelength. This discussion may provide a good understanding of the physics for the phenomena that the maximum scattering cross section is much larger than the physical size of the atom in atomic physics area.

Transmission Cross Section of the Small Aperture in an Infinite Conducting Plane (도체 평판에서 소형 개구의 투과 단면적)

  • Ko, Ji-Hwan;Park, Soon-Woo;Cho, Young-Ki
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.30 no.4
    • /
    • pp.300-306
    • /
    • 2019
  • Transmission cross section(TCS) is described analytically as $2G{\lambda}^2/4{\pi}$ irrespective of the aperture shapes for various transmission resonant apertures, such as small ridged circular or H-shaped, U-shaped, or Jerusalem cross-shaped apertures in an infinite thin conducting plane. The proposed expression is validated by comparison with the numerical results obtained from the method of moments(MOM). The TCS characteristics of the transmission resonant cavity structure in a thick conducting plane are also studied and the equivalence between the two small aperture structures is reported from the viewpoint of transmission efficiency.

A Novel Broadband Horn Antenna with Quadruple-Ridged Waveguide and Dielectric Lens (4중 릿지 도파관과 렌즈를 이용한 새로운 광대역 혼 안테나)

  • Lee, Kee-Oh;Park, Dong-Chul
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.11 no.6
    • /
    • pp.135-141
    • /
    • 2008
  • In this paper, a design method of broadband horn antenna having 3:1 bandwidth and multiple polarization characteristics is proposed. The feeding section of the antenna adopts quadruple-ridged waveguide type for broadband and multiple polarization characteristics of the antenna. By inserting a shorting bar in the cavity structure with a semi-sphere type back short, the return loss at the feeding section was minimized. A corrugated dielectric lens is designed for phase compensation and lens-surface matching at the antenna aperture, which improves the antenna beam pattern. The validity of the design method is verified by indicating the measured data of the antenna.

Resonant Transmission of a Rectangular Waveguide Probe with H-type Small Aperture (H-형태 소형 개구를 가진 직사각형 도파관 탐침의 공진 투과)

  • Ko, Ji-Hwan;Cho, Young-Ki
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.24 no.12
    • /
    • pp.1198-1204
    • /
    • 2013
  • As a microwave near field probe for near field scanning optical microscope(NSOM) system, H-shaped(ridge type) small aperture is proposed and its performances from the viewpoints of the transmission efficiency(transmission cross section) and spatial confinement(beam spot size) are compared with those of the previous narrow rectangular aperture type. While the transmission efficiencies are comparable to each other for the two structures, the transmitted beam spot size for the proposed H-shaped aperture is much smaller than that for the previous rectangular aperture. This strong point of the H-shaped aperture is expected to significantly improve near-field optical applications such as optical data storage, nanolithography and nanomicroscopy. It is also observed that the transmission efficiency can be improved if the coupling aperture is implemented in the type of the transmission cavity.

Design and Experiment of a Miniaturized Waveguide Band-Pass Filter Using L-Type Inverter and Small Resonant Aperture (L형 아이리스와 투과 공진 개구를 이용한 소형화된 도파관 여파기 설계 및 실험)

  • Choi, Jin-Young;Kim, Byung-Mun;Cho, Young-Ki
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.23 no.4
    • /
    • pp.457-467
    • /
    • 2012
  • In this paper, a miniaturized band-pass filter structure, which comprises the irises of small resonant aperture and L-type irises inverter, is proposed. Ridged circular aperture iris is chosen as an elementary resonator. L-type iris which is placed between two adjacent elementary resonators is newly proposed as impedance inverter in order to reduce longitudinal length of the proposed filter. The fabricated minimized filter has 400 MHz bandwidth at the 10 GHz center frequency and the whole size is reduced to 70 % in length compared to conventional filter.

The Analysis of Dual Resonant Iris for Designing Waveguide Band-Pass Filter (대역 통과 도파관 여파기 설계를 위한 이중 공진 아이리스 해석)

  • Choi, Jin-Young;Kim, Byung-Mun;Cho, Young-Ki
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.22 no.9
    • /
    • pp.904-911
    • /
    • 2011
  • This paper deals with transmission characteristics of a new dual resonant structure for designing waveguide band-pass filter. The structure which has a pass-band between two adjacent stop-bands in a single body consists of circular ridged aperture and four armed conducting patch. The dual resonant behavior of the structure can be represented by a combination of LC series and parallel resonant circuits. Also these resonant properties can be easily controlled by varying the geometry of the aperture and four armed conducting patch. Actually, the structure is fabricated on the microstrip substrate by use of etching technique so that it is formed an iris type resonator which can be easily put into the transverse plane of the waveguide. We use WR-90 standard waveguide, adapters, and VNA(vector network analyzer) to measure the resonant characteristics of the structure. It is very useful to design and to improve the cutoff skirts characteristics in the waveguide band-pass filter design area.