• Title/Summary/Keyword: Ride-comfort

Search Result 378, Processing Time 0.03 seconds

A Study on Optimum Design for Railway Alignment in Curve (곡선부 최적 선형 설계기법에 관한 연구)

  • Um, Ju-Hwan;Yang, Sin-Chu;Kim, Eun-Kyum
    • Journal of the Korean Society for Railway
    • /
    • v.12 no.4
    • /
    • pp.597-603
    • /
    • 2009
  • In this study, Based on the optimization developed in Um et al. (2009), optimum design method of the alignment when building new lines and renewing existing ones is presented. The object function used for optimization is passenger comfort ($P_{CT}$) which was proposed in BSI (2006). Other aspects of track/vehicle interaction will be treated in boundary conditions. And track/vehicle interaction analysis is peformed using KTX-II model. From the analysis results, it was found that the optimum alignments are affected by the angle (I) between adjacent straight lines and $R-L_t$ combinations. Also the dynamic analysis confirms well the results from the simplified analysis. However, In the most cases, the $P_{CT}$ values in the dynamic analysis are higher than the simplified $P_{CT}$ values. If both methods are used when optimizing the alignment, it will be possible to design the alignments more rapidly and reliably.

Applicability Evaluation of Precast Deck to the Maglev Guideway System : Static Performance Test (프리캐스트 바닥판의 자기부상열차 가이드웨이 시스템 적용성 평가 : 정적 성능 실험)

  • Jin, Byeong-Moo;Kim, In-Gyu;Kim, Young-Jin;Lee, Yun-Seok;Ma, Hyang-Wook;Oh, Hyun-Chul
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.985-988
    • /
    • 2008
  • Maglev is a system that a train runs levitated above a rail. Therefore it is very important to maintain a constant levitation gap for achieving serviceability and ride comfort. This study is a cooperation research subject of the 3-1 subject, performance improvement of maglev track structures, of the Center for Urban Maglev Program in Korea, started in 2006. The aim of this study is development of rapid constructions of bridge superstructure for maglev. At present, precast deck is widely used because of its superiority to cast-in-place concrete on quality and the term of works. The research group suggested basic systems of maglev guideway with PSC-U type and trapezoidal open steel box type girder, and precast deck, cooperating with Korea Railroad Research Institute, the managing institute of the 3-1 subject. In this study, full-scale structure was fabricated for structural safety evaluation of precast decks and rail, and a static performance test of those structures was performed.

  • PDF

Applicability Evaluation of Precast Deck to the Maglev Guideway System : Mock-Up Construction Test (프리캐스트 바닥판의 자기부상열차 가이드웨이 시스템 적용성 평가 : 모의 시공 실험)

  • Jin, Byeong-Moo;Kim, In-Gyu;Kim, Young-Jin;Oh, Hyung-Chul;Ma, Hyang-Wook;Lee, Yung-Seok
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.57-60
    • /
    • 2008
  • Maglev is a system that a train runs levitated above a rail. Therefore it is very important to maintain a constant levitation gap for achieving serviceability and ride comfort. This study is a cooperation research subject of the 3-1 subject, performance improvement of maglev track structures, of the Center for Urban Maglev Program in Korea, started in 2006. The aim of this study is development of rapid constructions of bridge superstructure for maglev. At present, precast deck is widely used because of its superiority to cast-in-place concrete on quality and the term of works. The research group suggested basic systems of maglev guideway with PSC-U type and trapezoidal open steel box type girder, and precast deck, cooperating with Korea Railroad Research Institute, the managing institute of the 3-1 subject. In this study, a mock-up consisted of girders, decks and rail was fabricated and test was performed for constructability, serviceability and maintenance evaluation of PSC U-type girder, precast deck, and new guide rail system.

  • PDF

A Study on the Control Algorithm for Engine Clutch Engagement During Mode Change of Plug-in Hybrid Electric Vehicles (플러그인 하이브리드 차량의 모드변환에 따른 엔진클러치 접합 제어알고리즘 연구)

  • Sim, Kyuhyun;Lee, Suji;Namkoong, Choul;Lee, Ji-Suk;Han, Kwan-Soo;Hwang, Sung-Ho
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.40 no.9
    • /
    • pp.801-805
    • /
    • 2016
  • In this paper, engine clutch engagement shock is analyzed during the mode change of plug-in hybrid electric vehicles. Multi-driving mode includes the EV (electric vehicle) mode, HEV (hybrid electric vehicle) mode, and engine operating mode. Depending on the mode change, the engine clutch is either engaged or disengaged. The magnitude of shock during clutch engagement is very important because it impacts vehicle acceleration and clutch synchronization speed, which affects ride comfort substantially. The performance simulator of plug-in hybrid electric vehicles was developed using MATLAB/Simulink. The simulation results show that the mode change control algorithm is necessary for minimizing shock during clutch engagement.

Dynamic Analysis of Wheel-Rail High Speed Train Propelled by Superconducting Linear Synchronous Motor (초전도 선형동기전동기 추진 휠-레일 고속열차의 동특성 분석)

  • Lee, Jin-Ho;Lee, Chang-Young;Jo, Jeong-Min;Han, Young-Jae
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.1
    • /
    • pp.119-125
    • /
    • 2016
  • This study examined the running dynamic characteristics of a hybrid type wheel-rail high speed train, in which the propulsion method of maglev is applied. A wheel-rail high speed train propelled by a superconducting linear synchronous motor (SC-LSM) is expected to be superior to a maglev train regarding economical and interoperable aspects, still having powerful thrust force as maglev. In this paper, regarding the two methods of applying the SC-LSM to an existing wheel-rail train, to investigate the influences of SC-LSM propulsion on the dynamic characteristics of wheel-rail high speed train, the dynamic model of train including interaction between the rotor and stator of SC-LSM is established. Through the simulation using the model, the influence of the interaction between the rotor and stator of SC-LSM on stability, ride comfort and the effect of guideway irregularity are investigated.

The Impact of the Bus Use Environments on Users Stress: The Case of Daejeon City (버스이용환경이 이용자의 스트레스에 미치는 영향: 대전시를 사례로)

  • LEE, Jaeyeong;PARK, Jin Hee
    • Journal of Korean Society of Transportation
    • /
    • v.33 no.6
    • /
    • pp.543-553
    • /
    • 2015
  • This study analyzed that the impact of the bus use environment on users' stress in each step of bus use, from accessing to leaving to transfer, in the city of Daejeon. For this, we collected the stress data from 300 users using personal interviews at the bus stops and on-board bus. Also, we used factor analysis and structural equation model method for analysis of the impact of external and internal bus environments on stress of users. The results of this study showed that the highest stress impact factor was an onboard factor(${\beta}=.416$) including 'density and crowding', 'no seat to seat' and 'low ride comfort and safe'. The next stress impact factor was transfer factor including 'insufficient transfer information', 'lack of connectivity of bus and subway' and 'uncomfort transfer route'. From the above, we recommend that bus policies need to focus on not the supplier but users and also, this user based policy need to be more specified considering the characteristics of various users such as females, the elderly, irregular users, and so on.

Dynamic Analysis Design of Balance Shaft for Reducing Engine Inertia Force and Pitching Moment (엔진 관성력과 피칭모멘트 저감을 위한 밸런스샤프트의 동역학 설계)

  • Kim, Byeong Jun;Boo, Kwang Suk;Kim, Heung Seob
    • Journal of the Korea Convergence Society
    • /
    • v.13 no.4
    • /
    • pp.307-313
    • /
    • 2022
  • The importance of engine vibration reduction is increasing as the vehicle interior noise becomes more serious due to higher output and lighten weight trends. Recently, the balance shaft attachment has been proposed as a representative method for the engine vibration reduction. The balance shaft is a device that cancels the vibrations generated in the reciprocating motion of the piston and the conrod by using an arbitrary eccentric mass, and can improve fuel efficiency and ride comfort at the same time. This paper proposes the unbalance amount and shape of the balance shaft to induce and offset the inertia force generated by the engine structure. The proposed two-shaped balance shaft was implemented as an ADAMS multi-body dynamics model, and the reduction of the inertial force in the actual behavior was confirmed through dynamic simulation.

Cognitive Perception of an Eco-friendly Public Transportation : Using Principal Component Analysis (친환경 대중교통 수단에 대한 인지적 특성 비교 분석 : 주성분분석을 활용하여)

  • Kwon, Yeongmin;Kim, Suji;Byun, Jihye
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.19 no.1
    • /
    • pp.71-82
    • /
    • 2020
  • The existing transportation system, which is based on internal combustion engines, is rapidly being converted to electrification. Thus, eco-friendly public transportation with high transportation efficiency will continue to spread throughout the market in the near future. The purpose of this study is to compare and analyze the cognitive characteristics of passengers redgarding the technical and social factors of various public transportation means to help a successful introduction of eco-friendly public transit. Through a survey questionnaire (N=485), seven factors of seven transportation modes were evaluated and analyzed using principal component analysis. As a result, it is confirmed that potential passengers have high expectations for the eco-friendliness and city image of the eco-friendly buses. Also, it is confirmed that eco-friendly buses are superior in cleanliness and ride comfort than diesel buses. Given the study's results, this study identifies the cognitive characteristics of passengers regarding eco-friendly public transportation. We hope that these results will be used as basic information for image positioning and improved service with the use of eco-friendly transportation.

Review of Minimum Curve Radius and Cant Range Setting for Mixed Section of Low and High speed Trains in Conventional Railway Line (일반철도의 저속 및 고속열차 혼용구간 최소곡선반경 및 설정캔트범위 검토)

  • Lee, Jae-Hyuk;Kim, Jeong-Hyeok;Park, Young-Gul
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.10
    • /
    • pp.345-353
    • /
    • 2020
  • On conventional railway lines, trains with different speeds are operated. Therefore, trains moving on curved sections with cants must accept various ranges of balanced cants, cant deficiency, and cant excess, which is essential for the comfort and safety of train operation. In this study, the correlation between the curve radius, cant, and train speed on a track was analyzed to check the cant range that satisfies the criteria of train types, operation speed, cant deficiency, and cant excess. Also, the range of setting the cant by the curve radius and balanced cant were calculated by a regression analysis of train speed according to the frequency of operation in the case of mixed trains. The results could make it possible to improve the speed of the operation route, reduce the loss of ride quality, reduce the risk of derailing caused by cant deficiency, and minimize the load deflection by excess cant. This will ensure the safety of trains running on curves and improve the efficiency of track maintenance.

Development of the Small Scale Testbed for Running Dynamic Characteristics Analysis of the Capsule Train (캡슐트레인 주행 동특성 분석을 위한 축소 시험장치의 개발)

  • Lee, Jin-Ho;You, Won-Hee;Lee, Kwansup
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.9
    • /
    • pp.643-651
    • /
    • 2020
  • A capsule train runs inside a sub-vacuum tube and can reach very high speed due to the low air resistance. A capsule train uses a superconducting electrodynamic suspension (SC-EDS) method for levitation, which allows for a large levitation gap and does not require gap control. However, SC-EDS has inherent characteristics such as the large gap variation and a small damping effect in the levitation force, which can degrade the running stability and ride comfort. To overcome this, a stability improvement device should be designed and applied based on dynamic analysis. In this study, a 1/10 small-scale testbed was developed to replicate the dynamic characteristics of a capsule train and investigate the performance of stability improvement devices. The testbed is composed of a 6-degree-of-freedom Stewart platform for the realization of bogie motion, a secondary suspension with a running stabilization device, and a carbody. Based on the dynamic similarity law proposed by Jaschinski, the small-scale testbed was manufactured, and a bogie motion algorithm was applied with the consideration of guideway irregularity and levitation stiffness. The experimental results from the testbed were compared with simulation results to investigate the performance of the testbed.