• 제목/요약/키워드: Ride Value

검색결과 84건 처리시간 0.025초

농업용 트랙터의 승차 진동 수준 평가 (Evaluation of Ride Vibrations of Agricultural Tractors)

  • 김호중;김경욱
    • Journal of Biosystems Engineering
    • /
    • 제33권3호
    • /
    • pp.151-156
    • /
    • 2008
  • This study was conducted to evaluate ride vibrations experienced by tractor operators during plowing, rotovating, and transporting operations in Korea. Field data of ride vibrations were taken at the operator-seat interface from 49 tractors and analyzed on the basis of ISO 2631-1 and EU Directive 2002/44. Of the measured ride vibrations 15.4% in the plowing and 12.5% in farm road transport exceeded the 8-hour fatigue decreased proficiency boundary in the fore and aft directions at frequencies from 1 to 5 Hz. 93.9% exceeded the 8-hour potential health risk of ISO 2631-1. The ride vibrations exceeding the 8-hour exposure limit were 38.5% in plowing, 31.6% in rotovating, 100% in farm road transport and 88.9% in concrete road transport. Although most tractor operators were not exposed to ride vibrations greater than the 8-hour exposure limit value (ELV) of EU Directive 2002/44, 7.7% of the operators in the plowing experienced greater vibrations than the ELV in the fore-aft direction. Farm road transport produced greater vibrations than any other operations. Concrete road transport, plowing and rotovating operations followed next. Limit criteria for ride vibration exposure differ depending upon the guidelines. Exposure limit of the health guidance caution zone of ISO 2631-1 is lowest among its kinds.

Evaluating Methods of Vibration Exposure and Ride Comfort in Car

  • Park, Se Jin;Subramaniyam, Murali
    • 대한인간공학회지
    • /
    • 제32권4호
    • /
    • pp.381-387
    • /
    • 2013
  • Objective: This paper studies the method of measuring whole-body vibration in the car and terms associated. Background: Human exposure to vibration can be broadly classified as localized and whole-body vibration. The whole-body vibration affects the entire body of the exposed person. It is mainly transmitted through the seat surfaces, backrests, and through the floor to an individual sitting in the vehicle. It can affect the comfort, performance, and health of individuals. Method: Human responses to whole-body vibration can be evaluated by two main standards such as ISO 2631 and BS 6841. The vibration is measured at 8 axes - three translations at feet, 3 translations of hip and two translations of back proposed by Griffin. B&K's sensors used in this study are the 3-axes translational acceleration sensor to measure the translational accelerations at the hip, back and foot. Results: The parameters associated with the whole-body vibration in the car are frequency weightings, frequency weighted root-mean-square, vibration dose values, maximum transient vibration value, seat effective amplitude transmissibility, ride values and ride comfort. Conclusion: Studied the evaluating methods of vibration exposure and ride comfort. Application: Evaluation of whole-body vibration in the car.

Virtual Seat Method를 이용한 승용차량 시트의 정차시 진동에 대한 승차감 평가 (Evaluation of Ride Comfort of the Passenger Vehicle Seat on idle vibration by Virtual Seat Method)

  • 이재영;안세진;정의봉
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2013년도 춘계학술대회 논문집
    • /
    • pp.780-787
    • /
    • 2013
  • Virtual Seat Method (VSM) is used in this study for a combined evaluation method (objective & subjective) to determine comfort value of passenger vehicle seat in terms of idle vibration. In the study, a process for applying VSM divided into two stages is established. Two kinds of seat mounting passenger vehicle and six subjects are employed to compare the comfort value obtained by VSM method and by SEAT value. As a conclusion, the results by the two methods were well consistent so that VSM is verified as a method to measure ride comfort of seat in terms of idle vibration at passenger vehicle.

  • PDF

한국인 더미모델을 이용한 시트진동 시뮬레이션과 실차시험의 비교분석 (Comparison of Vehicle Experiment and Computer Simulation of Seat Vibration using Korean Dummy Model)

  • 유완석;김정훈;박동운;이순영
    • 한국자동차공학회논문집
    • /
    • 제12권1호
    • /
    • pp.145-152
    • /
    • 2004
  • This paper compares seat vibrations of a small passenger car and a SUV. The results also include the comparison of the human body accelerations and the ride values, such as the component ride values, and SEAT values of 12 axis accelerations obtained at the human body and seat track. The ride comfort evaluation is usually carried out by experiments of real cars which are expensive and sometimes may contain errors by passenger's postures. Simulations by computer, on the other hand, enable to solve these problems when the accuracy is proven. This paper, thus, also shows the correlation of human body vibration between experiments and computer simulations. For the computer simulation, korean dummy models are developed from the Hybrid III models by scaling the body data of Hybrid III to those of Korean men and women. From the comparison between the test data and simulation data, a nice correlation in trends was shown.

설계변수의 산포를 고려한 차량 승차감의 강건최적설계 (Robust Design Optimization of the Vehicle Ride Comfort Considering Variation of the Design Parameters)

  • 송필곤;;유홍희
    • 한국소음진동공학회논문집
    • /
    • 제18권12호
    • /
    • pp.1217-1223
    • /
    • 2008
  • Vehicle vibration mostly originates from the road excitation and causes discomfort, fatigue and even injury to a driver. Vehicle ride comfort is one of the most important performance indices to achieve a high-quality vehicle design. Since design parameter variations inevitably result in the vehicle ride comfort variance, the variance characteristics should be analyzed in the early design stage of the vehicle. The vehicle ride comfort is often defined by an index which employs a weighted RMS value of the acceleration PSD of a seat position. The design solution is obtained through two steps in this study. An optimization problem to obtain a minimum ride comfort index is solved first. Then another optimization problem to obtain minimum variance of the ride comfort index is solved. For the optimization problems, the equations of motion and the sensitivity equations are derived basing on a 5-DOF vehicle model. The numerical results show that an optimal solution for the minimum ride comfort is not necessarily same as that of the minimum variance of the ride comfort.

응급구조(학)과 학생들의 구급현장실습 표준 평가도구의 유용성에 관한 연구 (A study on the usefulness of standard evaluation tools for ambulance ride practices of paramedic students)

  • 홍성기
    • 한국응급구조학회지
    • /
    • 제24권3호
    • /
    • pp.41-53
    • /
    • 2020
  • Purpose: This study tests the validity of a standard evaluation tool of ambulance ride practices with new evaluation items and supports its application by 119 preceptors. Methods: We tested the validity of standard evaluation items collected from 19 on-site professionals assessing ambulance ride practices. New evaluation items, 'understanding of emergency rescue equipment' and 'ability to communicate', were added as additional criteria. The modified Delphi technique was used to test the three evaluation areas and ten evaluation items. We used the analytic hierarchy process to analyze the weighting value of the reconstructed evaluation tool model. Results: All three evaluation areas and 10 evaluation items within the standard evaluation tools used for ambulance ride practices corresponded with the consistency index, degree of convergence, and agreement in the modified Delphi panel. Conclusion: These results provide evidence of the consistency and usefulness behind preceptors' use of this standard evaluation tool in ambulance ride practice.

궤도구조에 따른 고속철도차량의 진동특성 분석 (Analysis on the Vibration Characteristics of High Speed Train according to Track Structure)

  • 허현무;박준혁;유원희
    • 한국정밀공학회지
    • /
    • 제29권6호
    • /
    • pp.593-599
    • /
    • 2012
  • To analyze the effect of the track structure on the running performance of the railway vehicle, we studied on the vibration and ride characteristics of the high speed train. As results, vibration and ride level of high speed train on the concrete bed track is more reduced than on the ballast bed track. Peak-peak value of carbody vibration on the concrete bed track at 300km/h is half of the peak-peak value of carbody vibration on the ballast bed track. Ride level on the concrete bed track at 300km/h is same level as that on the ballast bed track at 250km/h. Thus, Vibration and ride performance of the high speed train on the concrete bed track is greatly improved compared with that on the ballast bed track.

인체모델을 사용한 승차감의 정량적 평가에 관한 연구 (A Study on the Evaluation of Ride Comfort using Human Model)

  • 김광석
    • 한국기계기술학회지
    • /
    • 제13권3호
    • /
    • pp.57-64
    • /
    • 2011
  • Vibrations on the floor in a car are transmitted to the foot, hip, and back from the seat. Human body recognizes these vibrations, but the sensitivity for each vibration is different. To evaluate these vibrations, RMS(root mean square) of accelerations, VDV(vibration does value) are commonly used. The ride comfort evaluation is usually carried out by experiments of real cars which are expensive. The purpose of this paper is to briefly review the status of several ride vibration standards and criteria having relevance to construction machinery vehicles and to suggest recommendations for the effective use of such criteria in vehicle / component development.

Ride Comfort Analysis of a Vehicle Based on Continuous Wavelet Transform

  • Lee, Sang-Kwon;Son, Choong-Yul
    • Journal of Mechanical Science and Technology
    • /
    • 제15권5호
    • /
    • pp.535-543
    • /
    • 2001
  • This paper presents the ride comfort analysis of a vehicle based on wavelet transform. Traditionally, the objective evaluation of impact harshness is based on the vibration dose value (VDV) and frequency weighting method. These methods do not consider the damping effect of the suspension system of a vehicle. In this paper, the damping is estimated using wavelet transform based on Morlet mother wavelet and its effect is considered for the subjective evaluation of impact harshness of a car.

  • PDF

조향방식 안내궤도 차량들의 주행 안정성 비교 (The Comparison of Running Performances between Various Steering-type Guideway Vehicles)

  • 윤성호
    • 한국철도학회논문집
    • /
    • 제5권1호
    • /
    • pp.18-25
    • /
    • 2002
  • This paper is to study a comparison of ride stabilities for the guideway vehicle between its three primary steering types; the front-rear wheel steering type, tile independent wheel steering and the front wheel steering. A numerical model were built to investigate various factors to have an influence on the vehicular stability. It was shown that dynamic stabilities of the three types were dependent on the steering gain ratio of front wheel steering to rear. The front-rear wheel steering type was more stable for the value of positive steering gains and the shorter distance between front axle and guide link showed better stabilities. On the contrary, the independent wheel steering was more stable for the value of negative gains and the longer distance between front axle and guide link showed better stabilities. Ride characteristics of he front wheel steering seemed to be found midway. Ride behaviors due to time delay from front steering to rear were very different from steering type to type.