• Title/Summary/Keyword: Rice uptake

Search Result 403, Processing Time 0.023 seconds

Varietal Difference in Water Absorption Characteristics of Milled Rice, and Its Relation to the Other Grain Quality Components

  • Hae Chune, Choi;Jeong Hyun, Chi;Soo Yeon, Cho
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.44 no.3
    • /
    • pp.288-295
    • /
    • 1999
  • Nineteen japonica and Tongil-type rices were selected from seventy nine Korean and Japanese rice cultivars grown in 1989 based on the water uptake behavior of milled rice under the room temperature and boiling conditions. The selected rice cultivars were investigated for water absorbability and some physicochemical characteristics of milled rice, proper water amount for cooking and sensory evaluation of cooked rice. The relationships among the tested grain properties were also examined. The highest varietal variation of water uptake rate was observed at twenty minutes after soaking in water. The maximum water uptake of milled rices at room temperature occurred mostly at about eighty minutes after soaking in water. Newly harvested rices showed a significantly lower water uptake rate of milled rice at 20 minutes after soaking, a relatively higher maximum water absorption ratio under the room temperature, and the less water uptake and volume expansion of boiled rice compared with the one-year old rice samples. The water uptake rate and the maximum water absorption ratio showed significantly negative correlations with the K/Mg ratio and alkali digestion value(ADV) of milled rice. The rice materials showing the higher amount of hot water absorption exhibited the larger volume expansion of cooked rice. The harder rices with lower moisture content revealed the higher rate of water uptake at twenty minutes after soaking and the higher ratio of maximum water uptake under the room temperature condition. These water uptake characteristics were not associated with the protein and amylose contents of milled rice ansd the palatability of cooked rice. The water/rice ratio(in w/w basis) for optimum cooking was averaged to 1.52 in dry milled rices (12% wet basis) with varietal range from 1.45 to 1.61 and the expansion ratio of milled rice after proper boiling was averaged to 2.63(in v/v basis). The water amount needed for optimum cooking was the lowest in Cheongcheongbyeo (Tongil-type rice) and the highest in Jinbubyeo, and the amount could be estimated with about 70% fittness by the multiple regression formula based on some water uptake characteristics, ADV and amylose content of milled rice as the independent variables. Nineteen rice cultivars were classified into seven groups based on scatter diagram projected by principal component analysis using eight properties related to water uptake and gelatinization of milled rice.

  • PDF

Water uptake rate of brown rice at $100^{\circ}C$ ($100^{\circ}C$에서의 현미의 수분 흡수 속도)

  • Kim, Sung-Kon;Suh, Chung-Sik
    • Applied Biological Chemistry
    • /
    • v.33 no.3
    • /
    • pp.261-263
    • /
    • 1990
  • The water uptake rates of thirty-four japonica and twenty-five j x indica brown rices at $100^{\circ}C$ were analyzed. The water uptake rates had no correlation with size or volume of brown rice kernel. The regression equations for water uptake rates between brown rice at $100^{\circ}C$(Y) and milled rice at $23^{\circ}C(X)$ for japonica and j x indica varieties were Y = 1.12X-0.34(r = 0.976, p<0.001) and Y = 1.16X-0.54(r = 0.990, p<0.001), respectively (Received August 13, 1990 and accepted September 20,1990).

  • PDF

Ammonium and Nitrate Uptake and Utilization Efficiency of Rice varieties as Affected by Different N-Concentrations

  • Choi Kyung-Jin;Swiader John M.
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.50 no.1
    • /
    • pp.22-27
    • /
    • 2005
  • To find out the optimum mixture ratio of ammonium and nitrate on rice plant, 4 rice varieties were examined during 14days after transplanting in hydroponics with the different ratio of ammonium to nitrate(100 : 0, 75: 25,50: 50, 25: 75 and 0: 100). The highest N uptake from solution and the maximum plant dry weight were $60\~70\%$ ammonium and $30\~40\%$ nitrate mixture treatment both in Japonica and Tongil type rice plants. And with the same varieties N-uptake and N use-efficiency were compared between 10.0 mM and 1.0 mM nitrogen using $70\%$ ammonium and $30\%$ nitrate for 24 days after transplanting. Rice plants absorbed more nitrogen$(131\~145\%)$ in 10.0mM than 1.0mM treatment but accumulated N in rice plants were almost the same in both treatment. Among the tested rice cultivars, dry matter production and total accumulative nitrogen in rice plants were much high in Tongil type than japonica type rice cultivars. N-recovery ratios of rice plants from uptake N were $90.8-99.0\%$ in low concentration N solution(1.0 mM), but $69.4-81.7\%$ were observed in high concentration N solution(10.0 mM). It means that suppling low concentration N steadily will be better to prevent loss of N without reducing of growth in rice plants.

Nitrogen Use Efficiency of High Yielding Japonica Rice (Oryza Sativa L.) Influenced by Variable Nitrogen Applications

  • Kang, Shin-Gu;Hassan, Mian Sayeed;Ku, Bon-Il;Sang, Wan-Gyu;Choi, Min-Kyu;Kim, Young-Doo;Park, Hong-Kyu;Chowdhury, M. Khalequzzaman A.;Kim, Bo-Kyeong;Lee, Jeom-Ho
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.58 no.3
    • /
    • pp.213-219
    • /
    • 2013
  • A field study was conducted to understand nitrogen use efficiency of high yielding Japonica rice varieties under three levels of nitrogen fertilizer (90, 150 and 210 kg N $ha^{-1}$) in Iksan, Korea. Two high yielding rice varieties, Boramchan and Deuraechan, and an control variety, Dongjin2, were grown in fine silty paddy. Nitrogen use efficiencies (NUE) were 83.3, 56.3, and 41.2 in 90, 150, and 210 kg N $ha^{-1}$ fertilizer level, respectively. Total nitrogen uptake varied significantly among nitrogen levels and varieties. Variety Dongjin2 showed the highest nitrogen uptake efficiency (NUpE), while Boramchan and Deuraechan showed higher nitrogen utilization efficiency (NUtE). However, Nitrogen harvest index (NHI) was higher in Boramchan (0.58) than Deuraechan (0.57) and Dongjin2 (0.53). Rough rice yield showed linear relationship with total nitrogen uptake ($R^2$=0.72) within the range of nitrogen treatments. Boramchan produced significantly higher rough rice yield (8546 kg $ha^{-1}$) which mainly due to higher number of panicles per $m^2$ compared to Deuraechan (7714 kg $ha^{-1}$). Deuraechan showed higher number of spikelets per panicle, but showed lower yield due to lower number of panicle per $m^2$. Rice varieties showed different nitrogen uptake ability and NUE at different nitrogen level. Plant breeders and agronomist should take advantage of the significant variations and relationships among grain yield, NUpE, and NUE.

Impacts of Planting Density on Nutrients Uptake by System of Rice Intensification under No-tillage Paddy in Korea

  • Meas, Vannak;Shon, Daniel;Lee, Young-Han
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.44 no.1
    • /
    • pp.98-103
    • /
    • 2011
  • The System of Rice Intensification (SRI) is a new concept of increasing the yield of rice produced in farming. Therefore, we investigated the impacts of planting density on nutrient uptake as affected by SRI under no-till cropping system. The field was prepared as a randomized complete block design with three treatments: $10{\times}10$ cm, $20{\times}20$ cm and $30{\times}30$ cm planting densities. The root dry mass was significantly increased in the wider planting densities (p<0.05%). The highest grain yield was obtained in $20{\times}20$ cm planting density plot (p<0.05%) due to higher plant density per unit area and spikelets number per panicle. The total uptake amounts by rice plant were significantly higher in $20{\times}$20 cm planting density plot as 94.8 kg $ha^{-1}$ for T-N and 29.9 kg $ha^{-1}$ for P than other planting densities plots, but K and Mg uptake were significantly higher in $10{\times}10$ cm planting density plot (p<0.05%). In this study, our findings suggest that SRI should be considered as a new practice for the rice productivity.

Variation of Nitrogen Use Efficiency and Its Relationships with Growth Characteristics in Rice Cultivars

  • Lee, Seung-Hun;Lee, Ho-Jin;Chung, Ji-Hoon;Cho, Young-Chul;Lee, Jae-Hong;Kim, Hee-Dong
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.49 no.2
    • /
    • pp.89-93
    • /
    • 2004
  • This experiment was conducted to investigate the variation of nitrogen use efficiency, nitrogen uptake efficiency, physiological utilization efficiency and their relationships with growth characteristics in the 28 Korean rice cultivars. Nitrogen use efficiency of 28 rice cultivars was 47.74, nitrogen uptake efficiency was 0.71, and physiological utilization efficiency was 68.76 in average. Nitrogen use efficiency of rice cultivars had low variation ranged from 44.09 to 51.91, but nitrogen uptake efficiency were relatively high variation from 0.51 to 0.90, and physiological utilization efficiency was from 51.71 to 94.26. The high efficient group in nitrogen uptake efficiency whose value was calculated above 0.80 included Daeanbyeo, Seojinbyeo, Ansungbyeo, Dongjinbyeo, and Hwaanbyeo, while the low efficient group with below 0.60 was Kwanganbyeo, Sampyeongbyeo, Soorabyeo, and Hwasungbyeo. Hwasungbyeo, Sampyeongbyeo, Soorabyeo for physiological utilization efficiency were more efficient cultivars, while Daeanbyeo, Seojinbyeo, Ansungbyeo were less efficient cultivars. Nitrogen uptake efficiency had positive correlation coefficients between dry matter weight of plant ($0.842^{**}$), leaf area index ($0.761^{**}$), and leaf nitrogen content ($0.599^{**}$), respectively. Therefore, the dry matter weight of rice plant and leaf area index was important characters to evaluate nitrogen uptake efficiency in rice cultivars. Also, more efficient cultivar in nitrogen uptake had higher chlorophyll meter value, which was appeared dark green color.

Effects of Rice Straw Amendment and Nitrogen Fertilization on Rice Growth and Soil Properties in Reclaimed Tidal Paddy Field

  • Lee, Sanghun;Bae, Hui-Su;Lee, Soo-Hwan;Lee, Kyeong-Bo;Noh, Tae-Hwan;Lee, Geon-Hwi
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.48 no.3
    • /
    • pp.205-212
    • /
    • 2015
  • Farmers with forage barley (Hordeum vulgare L.)-rice (Oryza sativa L.) cropping system at reclaimed tidal lands burn crop residues to facilitate seedbed preparation or remove them for feed stock. This study was conducted to investigate the effect of rice straw amendment and N fertilization on soil properties and N uptake of rice under forage barely-rice cropping system at reclaimed tidal paddy field. Rice straw was applied at the rates of 0, 2.5 and $5.0ton\;ha^{-1}$ and N was fertilized at 0, 100, 200 and $400kg\;ha^{-1}$. Although there was no significant difference in the growth and yield of rice, fresh and dry weight of forage barely increased with increasing the amount of rice straw. The amount of N uptake of rice at harvesting stage was $65.8-69.2kg\;ha^{-1}$ by the amount of rice straw amendment, but there were no significant differences among rice straw amendment levels. After harvesting the rice, the soil salinity decreased with rice straw amendment compared to the control. After forage barely and rice cultivation, soil organic matter contents increased to $2.6-2.8g\;kg^{-1}$ and $3.2-3.5g\;kg^{-1}$, respectively. The amount of N uptake of rice at harvesting stage increased up to $82kg\;ha^{-1}$ in $400kg\;ha^{-1}$ N applied plots which were $37.8kg\;ha^{-1}$ higher than the control. Nitrogen fertilization decreased N recovery efficiency. The highest yield of rice was observed at $244kg\;ha^{-1}$ N fertilization level, but the optimum N level was estimated at $168kg\;ha^{-1}$ in order to keep the protein content of rice under 6.5%. Further researches on N uptake and application of organic matter according to soil salinity will be necessary to increase N use efficiency at reclaimed tidal paddy field.

Effect of pH in Irrigation Water on the Growth, Yield, and Grain Quality of Rice (관개용수 pH가 벼 생육, 수량, 미질에 미치는 영향(I))

  • Choi, Sun-Hwa;Kim, Ho-Il;An, Yeul;Huh, Yoo-Man
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 2003.10a
    • /
    • pp.551-554
    • /
    • 2003
  • This study was carried out to investigate the effects of the pH of irrigation water on the growth, yield, and grain quality of rice. It acquire fundamental knowledges to set up irrigation water quality standards. The pot experiment was conducted with 5 treatments using irrigation waters with various pH values(control, 4, 6, 8, 10) and replicated four times with randomized block design. The results of this study showed that the uptake of N, P, and K, Ripened grain ratio and yield of rice tended to be reduced at the irrigation water of pH 4 and pH 10. P uptake, Ripened grain ratio and yield of rice at pH 4 water were significantly lower than the control. K uptake at pH 10 water was significantly lower than the control. Plant height, SPAD value and protein content of rice were not affected by the pH of irrigation water.

  • PDF

Diverse mechanism on cadmium uptake among rice varieties

  • Lee, Sang Beom;Kim, Kyu Won;Kim, Gyeong Jin;Choi, Buung;Yoo, Ji Hyok;Oh, Kyeong Seok;Moon, Byeong Churl;Park, Yong-jin;Park, Sang Won
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2017.06a
    • /
    • pp.157-157
    • /
    • 2017
  • In last study, Genome-Wide Association Studies (GWAS) was conducted for cadmium content of 295 rice varieties including 137 rice core set and 157 Korea breeding varieties collected from Kongju National University. The results showed that 9 varieties had SNP allele and amino acid substitution in exon of chromosome 1. This study was aim to understanding mechanism of cadmium uptake to confirm correlation of cadmium and other mineral nutrients (Cu, Mn, Fe) among 9 rice varieties. Nine varieties were planted on polluted soil of mine in Korea and cadmium content in root, stem, leaf and it's brown rice was analyzed by ICP-MS (Inductively Coupled Plasma Mass spectrometer, Agilent 7700E, US). Results of this study showed that mechanism for cadmium uptake and accumulation was diversity among varieties. Chin-nong and Ho-nong contained higher levels of cadmium in root, but contained relatively lower levels cadmium in brown rice than other varieties. Cheong-nam, Nam-pyeong, Gan-cheok, Suan absorbed high levels of cadmium through root and then accumulated high cadmium to brown rice. Meanwhile, Yeong-deok and Su-kwang absorbed lower cadmium in root, but high cadmium was accumulated in brown rice. Correlations between cadmium and other mineral nutrients (Cu, Mn, Fe) were analyzed by using SPSS statistics 20. The contents of iron in leaf had minus correlation (p<0.05) with cooper and cadmium in root, cadmium in brown rice. Therefore understanding of cadmium uptake mechanism among varieties will be used to basic data for further breeding and phytoremediation.

  • PDF

Yield and Nitrogen Uptake under Reduced Nitrogen Fertilizer during Early Growth of Rice in the Rice-Barley Double Cropping System

  • Seo, Jong-Ho;Cho, Hyeon-Suk;Kim, Chung-Guk;Lee, Jin-Mo;Park, Seong-Ho
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.49 no.1
    • /
    • pp.1-6
    • /
    • 2004
  • N fertilizer required by rice could be reduced greatly in the rice-barley double cropping system than in the rice single cropping system. This study was conducted to investigate how much of the N fertilizer during the early stage of rice in the rice-barley double cropping system, could be saved compared to that in the rice single cropping system. This experiment was carried out at the paddy field of the National Crop Experiment Station in Suwon, Korea during three years from 1999 to 2001. Amounts of soil mineral nitrogen (SMN) and SPAD values of rice leaf during rice growing season in the rice-barley double cropping system were higher than those in the rice single cropping system under the same amount of N application during two years. Yield and N uptakes of rice at harvesting time were also higher in the rice-barley double cropping system than in the rice single cropping system during two years. Yield and N uptake of rice in the rice single cropping system were decreased when basal N fertilizer was omitted, but those reductions were not found by either omitting basal N fertilizer or omitting N fertilizer at tillering stage in the rice-barley double cropping system during 2000 and 2001. But yield and N uptakes of rice were decreased by 70 kg/10a and 2kgN/10a by the omission of both N application at basal and tillering stages in the rice-barley double cropping system in 2002. It was concluded that N fertilizer as much as tillering N fertilizer could be saved in the rice-barley double cropping system.