• 제목/요약/키워드: Rice straw digestion

검색결과 56건 처리시간 0.024초

Low Ruminal pH Reduces Dietary Fiber Digestion via Reduced Microbial Attachment

  • Sung, Ha Guyn;Kobayashi, Yasuo;Chang, Jongsoo;Ha, Ahnul;Hwang, Il Hwan;Ha, J.K.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제20권2호
    • /
    • pp.200-207
    • /
    • 2007
  • In vitro rumen incubation studies were conducted to determine effects of initial pH on bacterial attachment and fiber digestion. Ruminal fluid pH was adjusted to 5.7, 6.2 and 6.7, and three major fibrolytic bacteria attached to rice straw in the mixed culture were quantified with real-time PCR. The numbers of attached and unattached Fibrobacter succinogenes, Ruminococcus flavefaciens and Ruminocococcus albus were lower (p<0.05) at initial pH of 5.7 without significant difference between those at higher initial pH. Lowering incubation media pH to 5.7 also increased bacterial numbers detached from substrate regardless of bacterial species. Dry matter digestibility, gas accumulation and total VFA production were pH-dependent. Unlike bacterial attachment, maintaining an initial pH of 6.7 increased digestion over initial pH of 6.2. After 48 h in vitro rumen fermentation, average increases in DM digestion, gas accumulation, and total VFA production at initial pH of 6.2 and 6.7 were 2.8 and 4.4, 2.0 and 3.0, and 1.2 and 1.6 times those at initial pH of 5.7, respectively. The lag time to reach above 2% DM digestibility at low initial pH was taken more times (8 h) than at high and middle initial pH (4 h). Current data clearly indicate that ruminal pH is one of the important determinants of fiber digestion, which is modulated via the effect on bacterial attachment to fiber substrates.

Nutritional value and in situ degradability of oak wood roughage and its feeding effects on growth performance and behavior of Hanwoo steers during the early fattening period

  • Ju, Ye Ri;Baek, Youl Chang;Jang, Sun Sik;Oh, Young Kyoon;Lee, Sung Suk;Kim, Yong Sik;Park, Keun Kyu
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제33권6호
    • /
    • pp.930-940
    • /
    • 2020
  • Objective: This study was conducted to evaluate changes in nutritional value and in situ dry matter (DM) degradability of oak and pine wood before and after steam-digestion process (60 min/160℃/6 atm) and feeding effect of the oak roughage on performance and behavior of Hanwoo steers. Methods: Chemical composition and tannin concentration were analyzed for oak and pine trees before and after the pretreatment. In situ DM and effective degradability of these samples were assessed using a nylon bag method. In vivo trial was performed to estimate animal performance and behavior, using steers fed total mixed ration (TMR) diets containing 0% (control), 25% (OR-25), and 50% (OR-50) of the oak roughage. Eighteen steers were allocated into nine pens (2 steers/pen, 3 pens/treatment) for 52 days according to body weight (BW) and age. Results: By the steam-digestion treatment, the neutral detergent-insoluble fiber was decreased from 86.5% to 71.5% for oak and from 92.4% to 80.5% for pine, thereby increasing non-fiber carbohydrate. In situ DM degradability of treated oak reached 38% at 72 h, whereas that of untreated oak was only 11.9%. The 0 h degradability of the treated pine increased from 5.9% to 12.1%, but the degradability was unchanged thereafter. Animal performance including BW, average daily gain, DM intake, and feed conversion ratio was not different among control and oak treatments. No differences were detected in animal behavior such as lying, standing, rumination, drinking, and eating, except walking. Walking was higher in control than oak treatments with numerically higher eating and lower lying times, probably due to bulkier characteristics of rice straw in the diet. Conclusion: This study demonstrates that the oak roughage can be substituted for 50% of total forage or 100% of rice straw in TMR diets at early fattening stage of Hanwoo steers.

암모니아 및 가성소다 처리가 Mycotoxin 오염 사료용 볏짚의 사일레지 저장 및 반추위 미생물의 섬유소 분해에 미치는 영향 (The Effect of Ammonia and Sodium Hydroxide Treatment on the Storage and Rumen Microbial Fiber Degradation in Silage of Rice Straw Contaminated Mycotoxin)

  • 성하균
    • 한국초지조사료학회지
    • /
    • 제40권2호
    • /
    • pp.80-86
    • /
    • 2020
  • 본 연구는 볏짚 사일리지의 곰팡이 독소 저감을 위한 효율적 방안으로 화학적 처리 방법에 따른 효능에 관한 진보적 연구 자료를 제공하고자 실시하였다. 화학적 처리 방법으로 암모니아 및 가성소다를 이용 곰팡이독소에 오염된 볏짚의 4% 수준으로 각각 처리하고 사일리지 저장에 따른 곰팡이독소 저감, 발효 품질 및 섬유소 소화에 미치는 영향을 평가 하였다. 모든 실험구에서 Aflatoxin B1, B2, G1, G2 그리고 Fomonisin B1, B2 뿐만 아니라 Dexynivalenol은 검출되지 않았으며, Ochratoxin A와 Zearalenone이 검출되었다. 그리고 Ochratoxin A은 대조구(41.23g/kg)보다 화학적 처리구에서 낮게 검출되었다(p<0.05). Zearalenone은 대조구(600.33㎍/kg) 및 암모니아 처리구(376.00㎍/kg)에 비하여 가성소다 처리구(297.44㎍/kg)가 더 낮은 결과를 나타내었다(p<0.05). 볏짚 사일리지의 pH는 암모니아 처리구(4.63)가 가장 낮았고, 가성소다 처리구가 가장(8.19) 높았다(p<0.05). lactic acid 함량은 대조구와 암모니아 처리구(10.85와 10.98mM)는 유사한 수준이었으나 가성소다 처리구(8.80mM)가 가장 낮았다(p,0.05). Propionic acid는 대조구(0.55mM)가 화학처리구에 비하여 높았으며(p<0.05), 암모니아와 가성소다 처리구간(0.09와 0.07mM)에는 유사한 함량을 나타내었다. 화학처리에 따른 볏짚 사일리지의 반추위 미생물의 NDF 및 ADF의 분해율 모두 가성소다 처리구가 가장 높은 분해율을 보였고 다음으로 암모니아 처리구이었으며, 대조구가 가장 낮은 수준을 나타내었다(p<0.05). 따라서 본 연구결과는 볏짚 사일리지 제조공정에서 암모니아 및 가성 소다 처리가 곰팡이 독소 저감 및 볏짚 사일리지의 반추위 미생물 분해율 증진에 좋은 영향을 주는 것으로 사료되며, 가성소다 처리는 암모니아 처리에 비하여 곰팡이 독소 저감 및 섬유소 분해율 증진에 더 효율적이었으나 사일리지 발효에는 비효율적 영향을 준 것으로 사료된다.

Effects of Supplementation of Eucalyptus (E. Camaldulensis) Leaf Meal on Feed Intake and Rumen Fermentation Efficiency in Swamp Buffaloes

  • Thao, N.T.;Wanapat, M.;Kang, S.;Cherdthong, A.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제28권7호
    • /
    • pp.951-957
    • /
    • 2015
  • Four rumen fistulated swamp buffaloes were randomly assigned according to a $4{\times}4$ Latin square design to investigate the effects of Eucalyptus (E. Camaldulensis) leaf meal (ELM) supplementation as a rumen enhancer on feed intake and rumen fermentation characteristics. The dietary treatments were as follows: T1 = 0 g ELM/hd/d; T2 = 40 g ELM/hd/d; T3 = 80 g ELM/hd/d; T4 = 120 g ELM/hd/d, respectively. Experimental animals were kept in individual pens and concentrate was offered at 0.3% BW while rice straw was fed ad libitum. The results revealed that voluntary feed intake and digestion coefficients of nutrients were similar among treatments. Ruminal pH, temperature and blood urea nitrogen concentrations were not affected by ELM supplementation; however, ELM supplementation resulted in lower concentration of ruminal ammonia nitrogen. Total volatile fatty acids, propionate concentration increased with the increasing level of EML (p<0.05) while the proportion of acetate was decreased (p<0.05). Methane production was linearly decreased (p<0.05) with the increasing level of ELM supplementation. Protozoa count and proteolytic bacteria population were reduced (p<0.05) while fungal zoospores and total viable bacteria, amylolytic, cellulolytic bacteria were unchanged. In addition, nitrogen utilization and microbial protein synthesis tended to increase by the dietary treatments. Based on the present findings, it is suggested that ELM could modify the rumen fermentation and is potentially used as a rumen enhancer in methane mitigation and rumen fermentation efficiency.

FRACTIONS, RUMINAL DISAPPEARANCE AND DIGESTION RATE OF DEER FEED NUTRIENTS ESTIMATED USING IN SITU BAG TECHNIQUE IN THE ARTIFICIAL RUMEN

  • Kwak, W.S.;Ahn, H.S.;Jeon, B.T.;Kim, O.H.;Roh, S.C.;Kim, C.W.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제9권2호
    • /
    • pp.189-193
    • /
    • 1996
  • A study was conducted to estimate nutritive value of forage sources used in deer diets. Bags containing feedstuffs were incubated four times for periods up to 72 hours in two chemostats filled with ruminal fluid from deer or cattle. Parameters estimated were water-soluble and $65{\mu}m$ filterable plus insoluble digestible fractions(No. = 4) and extent of disappearance(No. = 8) of feed neutral detergent fiber(NDF). Among tested feeds, the ranking of values of these parameters were soybean hulls > alfalfa pellets > corn cobs or rice straw > cottonseed hulls or rice hulls > sawdust, indicating that soybean hulls and alfalfa pellets were more fermentable than other agricultural residues. It is possible to utilize variability among tested feeds of fraction, disappearance rate and (or) extent of DM and NDF when these feeds are used as roughage sources in deer diets.

In-sacco Degradability of Dietary Combinations Formulated with Naturally Fermented Wheat Straw as Sole Roughage

  • Pannu, M.S.;Kaushal, J.R.;Wadhwa, M.;Bakshi, M.P.S.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제15권9호
    • /
    • pp.1307-1311
    • /
    • 2002
  • Twelve dietary combinations were prepared using 70 parts of fermented wheat straw (FWS) as the sole roughage supplemented with 30 parts of either the low protein concentrate mixture (Conc.-I), high protein concentrate mixture (conc.-II), maize grains (M), solvent extracted mustard cake (DMC), deoiled rice bran (DRB), uromol bran mixture (UBM), deep stacked poultry litter (DSPL), dried poultry droppings (DPD), M-DMC mixture (50:50), M-UBM mixture (50:50), M-DPD mixture (50:50) or M-UBM-DPD mixture (50:25:25) and evaluated by in-sacco technique. The above dietary combinations were also evaluated by changing the roughage to concentrate ratio to 60:40. The digestion kinetics for DM and CP revealed that FWS:DPD had the highest, whereas, the FWS:M-DMC had the lowest rapidly soluble fraction. The potentially degradable fraction was found to be maximum in FWS:M and minimum in FWS:DPD dietary combinations. The higher degradation rate of FWS:DRB and FWS:UBM combinations was responsible for their significantly (p<0.05) higher effective degradability as compared to other combinations. The highest undegradable fraction noted in FWS:M-UBM-DPD followed by FWS:DMC was responsible for high rumen fill values. The FWS:DRB, FWS:UBM and FWS:DPD combinations had higher potential for DM intake. The dietary combination with higher concentrate level (60:40) was responsible for higher potentially degradable fraction, which was degraded at a faster rate resulting in significantly higher effective degradability as compared to the corresponding dietary combination with low concentrate level (70:30). The low undegradable fraction in the high concentrate diet was responsible for low rumen fill values, which predicted of high potential for DM intake. Out of 24 dietary combinations, FWS with either of UBM, DRB, DMC, Maize, M-DMC or DPD in 70:30 ratio supplemented with minerals and vitamin A in comparison to conventional feeding practice (roughage and concentrate mixture) could be exploited as complete feed for different categories of ruminants.

팽이버섯 부산물 발효에 따른 한우 거세우 반추위 성상 및 소화율에 미치는 영향 (Effects of Applying Microbial Additive Inoculants to Spent Mushroom Substrate (Flammulina velutipes) on Rumen Fermentation and Total-tract Nutrient Digestibility in Hanwoo Steers)

  • 백열창;정진영;오영균;김민석;이성대;이현정;도윤정;;최혁
    • 한국유기농업학회지
    • /
    • 제25권3호
    • /
    • pp.569-586
    • /
    • 2017
  • We inoculated a spent mushroom substrate from Flammulina velutipes (SMSF) with a microbial additive and assessed the effects on chemical composition, ruminal fermentation parameters, and total-tract nutrient digestibility. In Exp. 1, three cannulated Hanwoo steers were used in an in situ trial to determine the degradation kinetics of dry matter (DM) and crude protein (CP). In Exp. 2, three Hanwoo steers were randomly assigned to experimental diets according to a $3{\times}3$ Latin square for a 3-week period (2 weeks for adaptation and 1 week for sample collection). Experimental diets included the control diet (3.75 kg/d formulated concentrate mixture + 1.25 kg/d rice straw), SMSF diet (3.19 kg/d formulated concentrate mixture + 1.25 kg/d rice straw + 0.56 kg/d SMSF), and inoculated SMSF (ISMSF) diet (3.19 kg/d formulated concentrate mixture + 1.25 kg/d rice straw + 0.56 kg/d ISMSF). The chemical composition of ISMSF did not differ from that of SMSF. Microbial additive inoculation decreased pH (P<0.05) and improved preservation for SMSF. The percentages of DM, neutral detergent fiber (NDF), and acid detergent fiber (ADF) in ISMSF were slightly lesser than those in SMSF. Ruminal fermentation characteristics and total-tract nutrient digestibility were not affected by diet. Overall, microbial additive inoculation improved preservation for SMSF and may allow improved digestion in the rumen; however, the total digestible nutrients (TDN) of SMSF and ISMSF diets were slightly lesser than the control diet. The ISMSF can be used as an alternative feedstuff to partially replace formulated concentrate feed.

Leucaena leucocephala and Gliricidia sepium Supplementation in Sheep Fed With Ammonia Treated Rice Straw: Effects on Intake, Digestibility, Microbial Protein Yield and Live-Weight Changes

  • Orden, E.A.;Abdulrazak, S.A.;Cruz, E.M.;Orden, M.E.M.;Ichinohe, T.;Fujihara, T.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제13권12호
    • /
    • pp.1659-1666
    • /
    • 2000
  • Two experiments were conducted to determine the effects of Leucaena leucocephala (leucaena) and Gliricidia sepium (gliricidia) supplementation on intake, digestion, outflow rates, microbial protein yield and live-weight changes in sheep fed with ammoniated rice straw (ARS). In experiment 1, three rumen cannulated Japanese Corriedale wether (mean body weight of 35.6 kg) in $3{\times}3$ Latin Square Design were used. Animals were fed ad libitum ARS alone, or supplemented with 200 g of either leucaena or gliricidia. In experiment 2, twenty-four growing native Philippine sheep with average body weight of $13.5{\pm}0.25kg$ were used in a completely randomized design (CRD) and offered similar diets to those of experiment 1. Supplementation increased total dry matter intake and nutrient digestibility except for fiber (p<0.05) without affecting ARS consumption. Nitrogen balance revealed that absorbed and retained N was significantly higher in leucaena and gliricidia. The significant improvement in N utilization and more digestible OM intake brought about by the inclusion of leucaena and gliricidia to ARS resulted in increased (p<0.05) microbial N yield. Efficiency of microbial N supply in supplemented group was not significantly different, but higher (p<0.05) than the 24.92 g N/kg DOMR for ARS group. Liquid outflow rate was 7.8 and 6.8 %/h, while the solid phase of rumen digesta was 4.4 and 3.8 %/h for the leucaena and gliricidia group respectively, which were significantly higher than 5.30 and 2.50 %/h in the control diet. The increase in total DMI resulted to higher (p<0.01) growth performance and efficient feed utilization. Average daily gain (ADG) was 19.3, 34.6 and 33.9 g/d for the ARS, leucaena and gliricidia respectively. It is therefore concluded that addition of leucaena and gliricidia to ARS in could increase nutrient intake and digestibility, subsequently improving N utilization and livestock performance.

Effect of Roughage Sources on Cellulolytic Bacteria and Rumen Ecology of Beef Cattle

  • Wora-anu, S.;Wanapat, Metha;Wachirapakorn, C.;Nontaso, N.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제20권11호
    • /
    • pp.1705-1712
    • /
    • 2007
  • The effect of different tropical feed sources on rumen ecology, cellulolytic bacteria, feed intake and digestibility of beef cattle was investigated. Four fistulated, castrated male crossbred cattle were randomly allocated to a $4{\times}4$ Latin square design. The treatments were: T1) urea-treated (5%) rice straw (UTS); T2) cassava hay (CH); T3) fresh cassava foliage (FCF); T4) UTS:FCF (1:1 dry matter basis). Animals were fed concentrates at 0.3% of body weight on a DM basis and their respective diets on an ad libitum basis. The experimental period was 21 days. The results revealed that the use of UTS, CH, FCF and UTS:FCF as roughage sources could provide effective fiber and maintain an optimal range of ruminal pH and $NH_3-N$. Total viable and cellulolytic bacterial populations were enhanced (p<0.05) with UTS as the roughage source. Animals fed FCF had a higher rumen propionate production (p<0.05) with a lower cellulolytic bacteria count. Moreover, three predominant cellulolytic bacteria species, namely Fibrobacter succinogenes, Ruminococcus albus and Ruminococcus flavefaciens, were found in all treatment groups. Roughage intake and total DM intake were highest with UTS (2.2 and 2.5% BW, respectively) as the roughage source (p<0.05). Nutrient intake in terms of organic matter intake (OMI) was similar in UTS, CH and UTS:FCF treatments (8.0, 6.8 and 8.7 kg/d, respectively), while crude protein intake (CPI) was enhanced in CH, FCF and UTS:FCF as compared to the UTS treatment (p<0.05). Digestion coefficients of DM and organic matter (OM) were similar among treatments, while the CP digestion coefficients were similar in CH, FCF and UTS:FCF treatments, but were higher (p<0.05) in CH than in UTS. CP and ADF digestible intakes (kg/d) were highest (p<0.05) on the CH and UTS treatments, respectively. It was also observed that feeding FCF as a full-feed resulted in ataxia as well as frequent urination; therefore, FCF should only be fed fresh as part of the feed or be fed wilted. Hence, combined use of FCF and UTS as well as CH and FCF were recommended.

Effects of Protein Supply from Soyhulls and Wheat Bran on Ruminal Metabolism, Nutrient Digestion and Ruminal and Omasal Concentrations of Soluble Non-ammonia Nitrogen of Steers

  • Kim, Jeong-Hoon;Oh, Young-Kyoon;Kim, Kyoung-Hoon;Choi, Chang-Won;Hong, Seong-Koo;Seol, Yong-Joo;Kim, Do-Hyung;Ahn, Gyu-Chul;Song, Man-Kang;Park, Keun-Kyu
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제22권9호
    • /
    • pp.1267-1278
    • /
    • 2009
  • Three beef steers fitted with permanent cannulae in the rumen and duodenum were used to determine the effects of protein supply from soyhulls (SH) and wheat bran (WB) on ruminal metabolism, blood metabolites, nitrogen metabolism, nutrient digestion and concentrations of soluble non-ammonia nitrogen (SNAN) in ruminal (RD) and omasal digesta (OD). In a 3${\times}$3 Latin square design, steers were offered rice straw and concentrates formulated either without (control) or with two brans to increase crude protein (CP) level (9 vs. 11% dietary DM for control and bran-based diets, respectively). The brans used were SH and WB that had similar CP contents but different ruminal CP degradability (52 vs. 80% CP for SH and WB, respectively) for evaluating the effects of protein degradability. Ruminal ammonia concentrations were higher for bran diets (p<0.01) than for the control, and for WB (p<0.001) compared to the SH diet. Similarly, microbial nitrogen and blood urea nitrogen were significantly increased (p<0.05) by bran and WB diets, respectively. Retained nitrogen tended (p<0.082) to be increased by SH compared with the WB diet. Intestinal and total tract CP digestion was enhanced by bran diets. In addition, bran diets tended (p<0.085) to increase intestinal starch digestion. Concentrations of SNAN fractions in RD and OD were higher (p<0.05) for bran diets than for the control, and for WB than for the SH diet. More rumendegraded protein supply resulting from a higher level and degradability of CP released from SH and WB enhanced ruminal microbial nitrogen synthesis and ruminal protein degradation. Thus, free amino acids, peptides and soluble proteins from microbial cells as well as degraded dietary protein may have contributed to increased SNAN concentrations in the rumen and, consequently, the omasum. These results indicate that protein supply from SH and WB, having a low level of protein (13 and 16%, respectively), could affect ruminal metabolism and nutrient digestion if inclusion level is relatively high (>20%).