• Title/Summary/Keyword: Rice straw application

Search Result 266, Processing Time 0.02 seconds

Effects of Water Management Rice Straw and Compost on Methane Emission in Dry Seeded Rice (벼 건답직파재배에서 물관리와 볏짚 및 퇴비가 메탄배출에 미치는 영향)

  • Ko, Jee-Yeon;Kang, Hang-Won;Park, Kyong-Bae
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.29 no.3
    • /
    • pp.212-217
    • /
    • 1996
  • Investgated in relation to Methane emission on dry seeded rice culture was flooding and intermittent irrigation and application time of rice straw in clayey soil. Negative peaks of the methane emission before 3 leaves stage which were never seen in the transplanting cultivation was found and the highest peak was come out at the heading stage. Total amount of emitted methane was lower about 40% than that of the transplanted. Methane emission decreased about 19% by intermittent irrigation. Compost and NPK application reduced methane about 70% and 80% in comparisin with rice straw. Rice straw application one month before sowing reduced methane emission than the application just before sowing.

  • PDF

Effects of Rice Straw Compost Application on Exchangeable Potassium in Long-term Fertilization Experiments of Paddy Soils

  • Kim, Myung-Sook;Park, Seong-Jin;Lee, Chang-Hoon;Ko, Byong-Gu;Yun, Sun-Gang
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.49 no.2
    • /
    • pp.194-199
    • /
    • 2016
  • In an experiment conducted at the research field of the National Institute of Agricultural Science, we investigated the effects of mineral fertilizer and rice straw compost on exchangeable potassium and K balances, and rice grain yield under a rice single system. The treatments were no fertilization (No fert.), inorganic fertilization (N), inorganic fertilizer (N, P, K) plus rice straw compost at rates of 7.5, 15.0, 22.5, and $30.0ton\;ha^{-1}$ (NPKC7.5, NPKC15.0, NPKC22.5, and NPKC30.0, respectively). The inorganic fertilizers(N, P, K) were added with standard fertilizer application rate in which nitrogen (N), phosphate ($P_2O_5$), and potassium ($K_2O$) were applied with $75{\sim}150kg\;ha^{-1}$, $70{\sim}86kg\;ha^{-1}$, $75{\sim}86kg\;ha^{-1}$, respectively. Exchangeable potassium for NPKC15.0 NPKC22.5, and NPK30.0 treatments was higher by $0.05{\sim}0.19cmol_c\;kg^{-1}$ than that of NPKC7.5 treatment. Increasing levels of rice straw compost resulted in an increase in the K balance from - $19.9kg\;ha^{-1}yr^{-1}$ (No fert.) to $41.9kg\;ha^{-1}yr^{-1}$ at NPKC22.5 treatment and $62.9kg\;ha^{-1}$ at NPKC30.0 treatment. Continuous application of rice straw compost with NPK fertilizers affected significantly the rice grain yields. The result of the study imply that the application of more than $22.5ton\;ha^{-1}$ of rice straw compost with NPK fertilizers are recommended as the best fertilization practice for enhancement of crop production and K supplying power of soil in the continuous rice cropping system.

Assessment of methane emission with application of rice straw in a paddy field

  • Choi, Eun Jung;Jeong, Hyun Cheol;Kim, Gun Yeob;Lee, Sun Il;Gwon, Hyo Suk;Lee, Jong Sik;Oh, Taek Keun
    • Korean Journal of Agricultural Science
    • /
    • v.46 no.4
    • /
    • pp.857-868
    • /
    • 2019
  • A flooded rice field is one of the significant sources of anthropogenic methane (CH4) with the intensity of the emissions dependent on management practices. Incorporation of rice straw, which is one of the organic amendments, induces the increase of methane emissions during the flooding season. In this study, we measured of methane emission according to applications of rice straw in different soil textures during a cultivation period in 2017 and 2018. The fallow treatments were non application of rice straw (NA), spring plowing after spring spreading of rice straw (SPSA), spring plowing after previous autumn spreading of rice straw (SPAA), and autumn plowing after previous autumn spreading of rice straw (APAA). The SPSA treatment emitted the highest total methane from loam soil in both 2017 (596.7 CH4 kg ha-1) and 2018 (795.4 CH4 kg ha-1). The same trend was observed in silt clay loam soil; the SPSA treatment still emitted the highest amount of methane in both 2017 (845.9 CH4 kg ha-1) and 2018 (1,071.7 CH4 kg ha-1). The lowest emission among the rice straw incorporated plots came from the APAA treatment for both soil texture types in all the seasons. The conversion factors of the SPAA were 0.79 and 0.65 from the loam and silt clay loam soils, respectively. Relatedly, the conversion factors of the APAA were 0.71 and 0.43 from the loam and silt clay loam soils, respectively. The above observations mean therefore that incorporation of rice straw early in the fallow reduces methane emissions in the main rice growing season.

Soil Properties and Growth and Yield of Rice Affected by Compost, Rice Straw and Hairy Vetch (퇴비, 볏짚, 헤어리베치 시용이 수도의 생육 및 토양에 미치는 영향)

  • Lee, Yong-Hwan;Lee, Sang-Min;Sung, Jwa-Kyung;Han, Hee-Suk;Ahn, Jong-Woong;Kwak, Chang-Gkil;Kim, Wan-Seok
    • Korean Journal of Organic Agriculture
    • /
    • v.19 no.3
    • /
    • pp.397-404
    • /
    • 2011
  • This experiment was performed to study growth and yield of rice (cv. Dongjinbyeo) and soil properties affected by the application of rice straw, compost, and hairy vetch. An application of rice straw and compost led to the decrease in plant heights and tillers compared with chemical fertilizer whereas hairy vetch application resulted in slight increase. Panicle no per plant was the highest in chemical fertilizer and there was no difference among organic matters. Grain per panicle was no difference among chemical fertilizer, rice straw, and compost whereas was the lowest in hairy vetch application. The 1,000 grain weights did not show any statistic difference and the ripened rate was enhanced in all treatments of organic sources compared with chemical fertilizer. Therefore, an index of rice yield of compost, rice straw, and hairy vetch to chemical fertilizer (100%) was 77, 72, and 103%, respectively. In addition, an application of organic sources led to the increase of soil pore space and this contributed to the improvement of soil physical property.

Effects of Amount of Nitrogen Application on Decomposition of Barley Straw and Growth & Yield of Rice in Paddy Field of Double Cropping (이모작(二毛作) 답(畓)에서 질소시용량(窒素施用量)이 보릿짚 분해(分解)와 수도생육(水稻生育) 및 수량(收量)에 미치는 영향(影響))

  • Yoo, Chul-Hyun;Yang, Chang-Hyu;Lee, Sang-Bok;Kang, Seung-Weon;Han, Sang-Soo;Kim, Seong-Jo
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.33 no.3
    • /
    • pp.167-174
    • /
    • 2000
  • To investigate the effect of amount of nitrogen application on decomposition of barley straw, growth and yield of rice in paddy field of double cropping, this study was conducted to Jeonbuk series at the Honam area from 1997 to 1998. Carbon persistence of barley straw was lowered while nitrogen persistence rate was increased as increasing amount of nitrogen application and carbon -nitrogen ratio was not decreased as increasing amount of nitrogen application. Soil microflora under barley straw application was high in order of actinomycetes>cellulosedecomposer>bacteria>fungi. Nitrogen starvation under barley straw application showed at tillering stage of rice, but this was not appeared in plot of N $144kg\;ha^{-1}$ application. Plant height, culm length and ear length of rice plant by barley straw application were short, but those of N $108kg\;ha^{-1}$ application was not different from compared with none-application barley straw. Rice yield of N $108kg\;ha^{-1}$ applied barley straw was smiliar to none-application barley straw, but that of N 90. $144kg\;ha^{-1}$ was highly decreased.

  • PDF

Estimation of Methane Emission by Water Management and Rice Straw Application in Paddy Soil in Korea (한국 논토양(土壤)에서 물관리(管理)와 볏짚 시용(施用)에 따른 메탄 배출량(排出量)의 추정(推定))

  • Shin, Yong-Kwang;Yun, Seong-Ho;Park, Moo-Eon
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.28 no.3
    • /
    • pp.261-265
    • /
    • 1995
  • Methane flux from a rice paddy in Korea was measured to study the effects of water management and rice straw application on methane emission under different water managements ; flooding and intermittent irrigation, and with or without rice straw application. Methane emission ranged from 0.066 to $0.455g\;CH_4m^{-2}d^{-1}$. Intermittent irrigation has shown a mitigation effect of methane emission, 70% in NPK plot and 47% in NPK plus rice straw plot, relative to that of flooding. Methane emission from Korean paddy was estimated as 399,590tons per year assuming that paddy fields were managed under intermittent irrigation and rice straw application. This estimation was lower than that of OECD's by 56%, Neue's by 51%, and Matthew's by 62%, while higher than that of Taylor's by 118%.

  • PDF

Estimation of Paddy CH4 Emissions through Drone-Image-Based Identification of Paddy Rice Straw Application & Winter Crop Cultivation (Drone 영상을 이용한 논 필지 볏짚 환원-동계 재배 확인 및 CH4 배출량 산정)

  • Jang, Seongju;Park, Jinseok;Hong, Rokgi;Hong, Joopyo;Kwon, Chaelyn;Song, Inhong
    • Journal of Korean Society of Rural Planning
    • /
    • v.27 no.3
    • /
    • pp.21-33
    • /
    • 2021
  • Rice straw management and winter crop cultivation are crucial components for the accurate estimation of paddy methane emissions. Field-based extensive investigation of paddy organic matter management requires enormous efforts however it becomes more feasible as drone technology advances. The objectives of this study were to identify paddy fields of straw application and winter crop cultivation using drone images and to apply for the estimation of yearly methane emission. Total 35 sites of over 150ha in area were selected nationwide as the study areas. Drone images of the study sites were taken twice during summer and winter in 2018 through 2019: Summer images were used to identify paddy cultivation areas, while winter images for straw and winter crop practices. Drone-image-based identification results were used to estimate paddy methane emission and compared with conventional method. As the result, mean areas for paddy, straw application and winter crop cultivation were 118.9ha, 12.0ha, and 11.3ha, respectively. Overall rice straw application rate were greater in Gyeonggi-do(20%) and Chungcheongnam-do(12%), while winter crop cultivation was greatest in Gyeongsangnam-do(30%) and Jeolla-do(27%). Yearly mean methane emission was estimated to be 226.2kg CH4/ha/yr in this study and about 32% less when compared to 331.8kg CH4/ha/yr estimated with the conventional method. This was primarily because of the lower rice straw application rate observed in this study, which was less than quarter the rate of 55.62% used for the conventional method. This indicates the necessity to use more accurate statistics of rice straw application as well as winter crop practices into paddy methane emission estimation. Thus it is recommended to further study to link drone technology with satellite image analysis in order to identify organic management practices at a paddy field level over extensive agricultural area.

Comparison of Dry-Seeding Methods for Improving Rice Seedling Stand on Reclaimed Saline Soil (간석지 벼 입모율 향상을 위한 건답직파 방법 비교)

  • 이인;성기영
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.41 no.3
    • /
    • pp.370-375
    • /
    • 1996
  • This study was conducted to find out the feasibility in direct seeded rice cultivation on the reclaimed saline soil. Seedling emergence was tested under the different application rates of rice straw and seeding depth, and also under combined treatments soil moisture regimes and seeding depth on saline soils in a greenhouse. The comparison of seedling stand and yield performance of rice in rotary till after broadcast seeding and in non-plow after broadcast seeding were tested on a field that reclaimed saline soil. Seedling emergence ratio in application of rice straw(4 and 6 tons /ha) was higher than that in non-application of rice straw. Seedling emergence and plant height were remarkably increased with the shallow seeding depth in the application of rice straw(4 tons /ha). The seedling emergence under proper soil moisture condition(25%) was higher than that under excess soil moisture condition(35%). Under proper soil moisture condition, the plant height was increased with the shallowed seeding depth. The number of seedling stand per m$^2$ in non-plow after broadcast seeding was larger than that in rotary till after broadcast seeding. Panicle number per m$^2$ in non-plow after broadcast seeding was much larger than that in rotary till after broadcast seeding and the yield showed the same trends as panicle number.

  • PDF

Application of Surface Cover Materials and Soil Amendments for Reduction of Non-Point Source Pollution from Upland Fields (배추와 무밭에서 발생하는 비점오염원 저감을 위한 피복재와 토양개량제 적용)

  • Shin, Min Hwan;Jang, Jeong Ryeol;Shin, Hyun Jun;Kum, Dong Hyuk;Choi, Yong Hun;Won, Chul Hee;Lim, Kyoung Jae;Choi, Joong Dae
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.55 no.4
    • /
    • pp.21-28
    • /
    • 2013
  • The objective of the study was to investigate the effect of rice straw mat, rice straw mat with PAM (Polyacrylamide) and gypsum addition on surface runoff and sediment discharge in field. Six experimental plots of $5{\times}22m$ in size and 3 % in slope prepared on gravelly sandy loam soil were treated with control, rice straw mat cover with gypsum and rice straw mat cover with gypsum and PAM. Radish in Spring and Chinese cabbage in autumn growing seasons were cultivated. Non point source (NPS) pollution discharge was monitored and compared among the treatments. Rainfall of the 10 monitored events ranged from 17.0 mm to 93.5 mm. Runoff coefficient of the events was 0.005~0.239 in control plot, 0~0.176 in rice straw plot with gypsum and 0~0.046 in rice straw mat plot with gypsum and PAM. When compared to the control plot, the runoff amount was reduced by 10.4~100 % (Ave. 60.8) in rice straw plot with gypsum and 80.7~100 % (Ave. 96.7 %) in rice straw mat plot with gypsum and PAM. The reduction of NPS pollution load was 54.6 % for BOD5, 71.5 % for SS, 41.6 % for TN and 61.4 % for T-P in rice straw with gypsum plot and 91.9 % for BOD5, 92.0 % for SS, 88.0 % for TN and 88.5 % for T-P in rice straw mat with gypsum and PAM plot. This research revealed that rice straw mat cover with soil amendments on the soil surface could not only increase the crop yield but also reduce the NPS pollution loads substantially.

Effect of Rice Straw Application on Yield of Whole Crop Barley and Change in Soil Properties under Upland Condition in Saemangeum Reclaimed Tidal Land

  • Lee, Su-Hwan;Shin, Pyeong;Bae, Hui-Su;Lee, Jang-Hee;Oh, Yang-Yeol;Lee, Sang-Hun;Rho, Tae-Hwan;Song, Beom-Heon;Cho, Jae-Yeong;Lee, Kyoung-Bo;Lee, Keon-Hui;Park, Ki-Hoon
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.47 no.6
    • /
    • pp.586-593
    • /
    • 2014
  • Newly reclaimed tidal land is known to be in low status of soil fertility. The incorporation of crop residue is an effective method to improve soil properties and fertility in reclaimed saline soils. The objective of this study was to evaluate the efficiency of rice straw (RS) application to improve physico-chemical properties of saline-sodic soil and its contribution to productivity of whole crop barley. Increasing rate of rice straw improved growth parameter related to yield of whole crop barley, which increased tiller number significantly (p<0.05).The yield increased by 15% (F.W) and 9% (D.W) in rice straw-amended plots. The content of soil organic matter (SOM) in the surface soil (0-20cm) with rice straw incorporation increased by 5~9% (RS 2.5~RS 7.5) compared to RS 0, in which the content of SOM decreased after two consecutive cultivations. Rice straw incorporation promoted soil physico-chemical properties and nutrient-availability of the test crop, as indicated in change in soil bulk density, porosity and increased nutrient uptake of plant. Especially, the P content and uptake of whole crop barley increased with increasing the rate of rice straw application. In conclusion, the rice straw application at rates of $5.0-7.5ton{\cdot}ha^{-1}$ in reclaimed saline soils effectively improved soil properties and crop productivity, which has potentials to reduce the loss of chemical fertilizers and facilitate the favorable condition for crop growth under adverse soil condition.