• Title/Summary/Keyword: Rice pathway

Search Result 120, Processing Time 0.039 seconds

Nuclides Transport Analysis and Dose Calculation Using Dynamic Model for Rice Ingestion Pathway (쌀 섭취경로에서 동적모델을 사용한 장반감기핵종의 거동해석 및 내부피폭 선량계산)

  • Lee, Chang-Woo;Choi, Yong-Ho;Hwang, Won-Tae;Lee, Jeong-Ho
    • Journal of Radiation Protection and Research
    • /
    • v.17 no.2
    • /
    • pp.15-23
    • /
    • 1992
  • Transport behaviors of Cs-137 and Sr-90 were analyzed and ingestion doses were calculated using dynamic model for rice field-rice-man pathway. Cs-137 binding strongly to soil remain longer in rice field than Sr-90. Foliar deposition on rice plant during growing period is the main contamination mechanism.

  • PDF

Reconsideration on the Importation Pathway of Ancient Korean Rice(Oryzar sativar L.) (고대 한반도에서 재배된 벼의 전래 경로에 대한 고찰)

  • Park, Tae-Shik
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.54 no.1
    • /
    • pp.119-123
    • /
    • 2009
  • Importation pathway of rice cultivar into Korea was re-established with considering ancient geo-ecological characteristics of the Sororibyeo excavated from Cheongwon. It is assumed that Sororibyeo settled down in Korea by the importation pathway along the southern seashore of China through old downstream of Geumgang by a southern Korean human race when China and Korea were not yet separated each other by the Yellow Sea. This importation pathway was designated as "Old Geumgang-Sorori Rice Road", in this study. It is further inferred that Korean Peninsula was geographically isolated by ocean after the Ice Age. In consequence, Gawajibyeo, an ancient rice with little genetic variation, was evolved from Sororibyeo, which is estimated to evolve into rice cultivar in Korean Peninsula.

Functional Conservation and Divergence of FVE Genes that Control Flowering Time and Cold Response in Rice and Arabidopsis

  • Baek, Il-Sun;Park, Hyo-Young;You, Min Kyoung;Lee, Jeong Hwan;Kim, Jeong-Kook
    • Molecules and Cells
    • /
    • v.26 no.4
    • /
    • pp.368-372
    • /
    • 2008
  • Recent molecular and genetic studies in rice, a short-day plant, have elucidated both conservation and divergence of photoperiod pathway genes and their regulators. However, the biological roles of rice genes that act within the autonomous pathway are still largely unknown. In order to better understand the function of the autonomous pathway genes in rice, we conducted molecular genetic analyses of OsFVE, a rice gene homologous to Arabidopsis FVE. OsFVE was found to be ubiquitously expressed in vegetative and reproductive organs. Overexpression of OsFVE could rescue the flowering time phenotype of the Arabidopsis fve mutants by up-regulating expression of the SUPPRESSOR OF OVEREXPRESSION OF CO1 (SOC1) and down-regulating FLOWERING LOCUS C (FLC) expression. These results suggest that there may be a conserved function between OsFVE and FVE in the control of flowering time. However, OsFVE overexpression in the fve mutants did not rescue the flowering time phenotype in in relation to the response to intermittent cold treatment.

Molecular characterization of a novel rice(Oryza sativa L.) MAP kinase, OsEDRl, its role in defense signaling pathway.

  • Kim, Jung-A;Jwa, Nam-Soo
    • Proceedings of the Korean Society of Plant Pathology Conference
    • /
    • 2003.10a
    • /
    • pp.82-83
    • /
    • 2003
  • Plants have evolved differently from animals having mobile activities. Thus, plants should have developed unique defense mechanisms against biotic/abiotic stresses to which plants are differently exposed, according to seasons. Most organisms have an conserved signaling network using mitogen-activated protein kinase (MAPK) cascade(s). The phenomenon implied that they are functionally very important in all organisms. In fact, they constitute one of the major components of signaling pathways involved in regulating a wide range of cellular activities from growth and development to cell death. Recently, complete MAPK cascade was first characterized in Arabidopsis from the receptor kinase (FLS2) through fellowing MEKKI -MKK4/MKK5-MPK3/MPK6-WRKY22/MRKY29 pathway. Whereas, MAPK cascade signaling pathway in monocot plant including rice (0ryza sativa L.), the most important of all food crops and an established monocot plant research model, MAPKinase kinase kinases (MAPKKK) of rice are the first upstream component of the MAPK cascade, but MAPKKK has been first identified and characterized in our lab and designated as, OsEDRl based on its homology with the Arabidopsis EDRI. The Arabidopsis EDRl was regarded as a negative regulator of defense response and the role of rice OsEDRl was analyzed. Transcriptional regulation of OsEDRl was detected under various stresses and immunoblotting analysis is going on to detect the level of OsEDRl protein in the mutants showing unique phenotype. We also introduced the constitutively active and the dominant negative forms of the OsEDRl for characterizing biological function.

  • PDF

Growth and Yield Response of Transgenic Rice Plants Expressing Protoporphyrinogen Oxidase Gene from Bacillus subtilis

  • Kuk, Yong-In;Chung, Jung-Sung;Sunyo Jung;Kyoungwhan Back;Kim, Han-Yong;Guh, Ja-Ock
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.48 no.4
    • /
    • pp.326-333
    • /
    • 2003
  • Transgenic rice plants expressing a Bacillus subtilis protoporphyrinogen oxidase (Protox), the last shared enzyme of the porphyrin pathway in the expressed cytoplasm or the plastids, were compared with non-trangenic rice plants in their growth characteristics such as tiller number, plant height, biomass, and yield. Transgenic rice plants of $\textrm{T}_3$ generation had 8 to 15 % and 25 to 43% increases in tiller number compared to non-transgenic rice plants at 4 and 8 weeks after transplanting(WAT); similar values were observed for $\textrm{T}_4$ generation at 4 and 8 WAT. However, the plant height in both $\textrm{T}_3$ and $\textrm{T}_4$ generations was similar between transgenic rice plants and non-transgenic rice plants at 4 and 8 WAT. Transgenic rice plants had 13 to 32% increase in above-ground biomass and 9 to 28% increase in grain yield compared to non-transgenic rice plants, demonstrating that biomass and yield correlate with each other. The increased grain yield of the transgenic rice plants was closely associated with the increased panicle number per plant. The percent of filled grain, thousand grains and spikelet number per panicle were similar between transgenic and non-transgenic rice plants. Generally, the growth and yield of transgenic generations ($\textrm{T}_2$, $\textrm{T}_3$, and $\textrm{T}_4$) and gene expressing sites (cytoplasm-expressed and plastid-targeted transgenic rice plants) were similar, although they slightly varied with generations as well as with gene expressing sites. The transgenic rice plants had promotive effects, indicating that regulation of the porphyrin pathway by expression of B. subtilis Protox in rice influences plant growth and yield.

Involvement of the OsMKK4-OsMPK1 Cascade and its Downstream Transcription Factor OsWRKY53 in the Wounding Response in Rice

  • Yoo, Seung Jin;Kim, Su-Hyun;Kim, Min-Jeong;Ryu, Choong-Min;Kim, Young Cheol;Cho, Baik Ho;Yang, Kwang-Yeol
    • The Plant Pathology Journal
    • /
    • v.30 no.2
    • /
    • pp.168-177
    • /
    • 2014
  • Plant has possessed diverse stress signals from outside and maintained its fitness. Out of such plant responses, it is well known that mitogen-activated protein kinase (MAPK) cascade plays important role in wounding and pathogen attack in most dicot plants. However, little is understood about its role in wounding response for the economically important monocot rice plant. In this study, therefore, the involvement of MAPK was investigated to understand the wounding signaling pathway in rice. The OsMPK1 was rapidly activated by wounding within 10 min, and OsMPK1 was also activated by challenge of rice blast fungus. Further analysis revealed that OsMKK4, the upstream kinase of OsMPK1, phosphorylated OsMPK1 by wounding in vivo. Furthermore, OsMPK1 directly interacted with a rice defense-related transcription factor OsWRKY53. To understand a functional link between MAPK and its target transcription factor, we showed that OsMPK1 activated by the constitutively active mutant $OsMKK4^{DD}$ phosphorylated OsWRKY53 in vitro. Taken together, components involving in the wounding signaling pathway, OsMKK4-OsMPK1-OsWRKY53, can be important players in regulating crosstalk between abiotic stress and biotic stress.

III. Investigation on Allelopathic Effect from Various Crosses of Rice Cultivars (III. 벼 교잡종의 Allelopathy 효과 구명)

  • Lee, Jae-Hyun;Shin, Dong-Hyun;Lee, In-Jung;Kim, Kil-Ung
    • Current Research on Agriculture and Life Sciences
    • /
    • v.20
    • /
    • pp.65-70
    • /
    • 2002
  • This study was conducted to investigate allelopathic potential of various crosses of rice cultivars using their inhibitory effect on barnyardgrass growth under field conditions, and to determine PAL activity and phenolic compounds involved in phenylpropanoid pathway from selected crosses of rice cultivars. Under field conditions, Kouketsumochi, Woo co chin yu possessed higher allelopathic potential inhibiting over 90% of barnyardgrass growth. Crosses of Kouketsumochi/Woo co chin yu, Dongjinbeyo/Kouketsumochi, Dongjinbeyo/Woo co chin yu showed over 80% inhibitory effects on barnyardgrass growth. The highest PAL activity, $63.46{\mu}kats/kg$ proteins was detected in Kouketsumochi which is the most important enzyme in phenylpropanoid pathway and also higher PAL activity in crosses with Kouketsumochi. Content of cinnamate was $2.64{\mu}g/g$ f.w. in Kouketsumochi which was 2 to 5 times higher than other rice cultivars tested, indicating that higher PAL activity resulted in more cinnamate. The similar trends in cinnamate content and PAL activity were observed in crosses of rice cultivars with Kouketsumochi.

  • PDF

Overexpression of twin-arginine translocation (TAT) pathway conferred immunity to Xanthomonas oryzae v. oryzae in rice

  • Nino, Marjohn C.;Song, Jae-Young;Nogoy, Franz Marielle;Kang, Kwon-Kyoo;Cho, Yong-Gu
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2017.06a
    • /
    • pp.166-166
    • /
    • 2017
  • OsTAT encodes a twin-arginine translocator (TAT) pathway signal protein. It contains a TRANS membrane domain and a chloroplast transit peptide. mRNA transcription profiling of OsTAT1 revealed that it is highly overexpressed in the leaves corroborating reports on its role in chloroplast. Moreover, its level of expression is more pronounced during earlier stages (germination, 3-leaf stage, and maximum tillering) of growth in rice. A lower disease progress curve of bacterial blight is evident in transgenic lines compared with the wild type, Dongjin indicating its involvement in immunity to Xoo. Expression pattern following infection of Xoo strain K2 depicts highest levels at 4 and 8 hour post-inoculation which implies crucial induction of resistance during early response. This study initially reports a new overview on the biological functions of plant's TAT pathway. Further molecular and genetic analyses are underway to provide detailed involvement of OsTAT in disease resistance.

  • PDF

The overexpression of Arachis hypogaea resveratrol synthase 3 (AhRS3) modified the expression pattern of phenylpropanoid pathway genes in developing rice seeds

  • Lee, Choonseok;Jeong, Namhee;Kim, Dool-Yi;Ok, Hyun-Choong;Choi, Man-Soo;Park, Ki-Do;Kim, Jaehyun
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2017.06a
    • /
    • pp.167-167
    • /
    • 2017
  • Our previous study for developing seeds of Iksan 526 (I.526), an inbred line of resveratrol-producing transgenic rice line, showed that, in 20 days after heading (DAH) seeds, resveratrol was almost saturated and accumulation of piceid was highest though the expression of Arachis hypogaea resveratrol synthase 3 (AhRS3, GenBank DQ124938) was highest in 31 DAH seeds. In this study, it was investigated how the overexpression of AhRS3 affects phenylpropanoid pathway genes. p-Coumaroyl-CoA is derived from phenylpropanoid pathway and used as a substrate of AhRS3 reaction for resveratrol production. In 6, 13, 20, 31 and 41 (45 for Dongjin) DAH seeds of I526 and Dongjin, a wild type of I.526, respectively, the expression pattern of phenylpropanoid pathway genes, including phenylalanine ammonia-lyase (PAL: LOC_Os02g41630.2, LOC_Os04g43760.1), cinnamate 4-hydroxylase (C4H: LOC_Os05g25640.1), 4-coumarate-CoA ligase (4CL: LOC_Os02g08100.1), cinnamoyl-CoA reductase (CCR: LOC_ Os09g25150.1, LOC_Os08g34280.1), hydroxycinnamoyl-CoA shikimate/quinate hydroxycinnamoyl transferase (HCT: LOC_Os04g42250.2, LOC_Os02g39850.1) and cinnamyl alcohol dehydrogenase (CAD: LOC_Os02g09490.1), was examined using real time (RT)-PCR. Compared to developing seeds of Dongjin, RT-PCR results showed that the expression pattern of phenylpropanoid pathway genes was modified in developing seeds of I.526. In most genes, except for CAD, of I.526 developing seeds, the gene expression was highest in 20 DAH corresponding to biosynthesis of resveratrol and piceid, i.e. the expression of phenylpropanoid pathway genes was gradually increased by 20 DAH and decreased as seeds develop. Especially, in Dongjin, the highest expression of PALs and 4CL was in 6 DAH and their expression was gradually decreased as seeds develop. These genes expression data also exhibited that, in developing seeds of I.526, phenylpropanoid pathway genes were slightly or significantly (in some genes) upregulated compared to Dongjin. Therefore, the overexpression of AhRS3 changed the expression pattern of phenylpropanoid pathway genes in I.526 developing seeds and this modification for gene expression is closely related to biosynthesis of resveratrol and piceid.

  • PDF