• Title/Summary/Keyword: Rice endophyte

Search Result 9, Processing Time 0.019 seconds

Changes in Endophyte Communities across the Different Plant Compartments in Response to the Rice Blast Infection

  • Mehwish Roy;Sravanthi Goud Burragoni;Junhyun Jeon
    • The Plant Pathology Journal
    • /
    • v.40 no.3
    • /
    • pp.299-309
    • /
    • 2024
  • The rice blast disease, caused by the fungal pathogen, Magnaporthe oryzae (syn. Pyricularia oryzae), poses a significant threat to the global rice production. Understanding how this disease impacts the plant's microbial communities is crucial for gaining insights into host-pathogen interactions. In this study, we investigated the changes in communities of bacterial and fungal endophytes inhabiting different compartments in healthy and diseased plants. We found that both alpha and beta diversities of endophytic communities do not change significantly by the pathogen infection. Rather, the type of plant compartment appeared to be the main driver of endophytic community structures. Although the overall structure seemed to be consistent between healthy and diseased plants, our analysis of differentially abundant taxa revealed the specific bacterial and fungal operational taxonomic units that exhibited enrichment in the root and leaf compartments of infected plants. These findings suggest that endophyte communities are robust to the changes at the early stage of pathogen infection, and that some of endophytes enriched in infected plants might have roles in the defense against the pathogen.

Seed-born Burkholderia glumae Infects Rice Seedling and Maintains Bacterial Population during Vegetative and Reproductive Growth Stage

  • Pedraza, Luz Adriana;Bautista, Jessica;Uribe-Velez, Daniel
    • The Plant Pathology Journal
    • /
    • v.34 no.5
    • /
    • pp.393-402
    • /
    • 2018
  • Rice world production is affected due to the growing impact of diseases such as bacterial panicle blight, produced by Burkholderia glumae. The pathogen-induced symptoms include seedling rot, grain rot and leafsheath browning in rice plants. It is currently recognized the entrance of this pathogen to the plant, from infected seeds and from environmental sources of the microorganism. However, it is still not fully elucidated the dynamics and permanence of the pathogen in the plant, from its entry until the development of disease symptoms in seedlings or panicles. In this work it was evaluated the infection of B. glumae rice plants, starting from inoculated seeds and substrates, and its subsequent monitoring after infection. Various organs of the plant during the vegetative stage and until the beginning of the reproductive stage, were evaluated. In both inoculation models, the bacteria was maintained in the plant as an endophyte between $1{\times}10^1$ and $1{\times}10^5cfu$ of B. $glumae.g^{-1}$ of plant throughout the vegetative stage. An increase of bacterial population towards initiation of the panicle was observed, and in the maturity of the grain, an endophyte population was identified in the flag leaf at $1{\times}10^6cfu$ of B. $glumae.g^{-1}$ fresh weight of rice plant, conducting towards the symptoms of bacterial panicle blight. The results found, suggest that B. glumae in rice plants developed from infected seeds or from the substrate, can colonize seedlings, establishing and maintaining a bacterial population over time, using rice plants as habitat to survive endophyticly until formation of bacterial panicle blight symptoms.

Salinity Stress Resistance Offered by Endophytic Fungal Interaction Between Penicillium minioluteum LHL09 and Glycine max. L

  • Khan, Abdul Latif;Hamayun, Muhammad;Ahmad, Nadeem;Hussain, Javid;Kang, Sang-Mo;Kim, Yoon-Ha;Adnan, Muhammad;Tang, Dong-Sheng;Waqas, Muhammad;Radhakrishnan, Ramalingam;Hwang, Young-Hyun;Lee, In-Jung
    • Journal of Microbiology and Biotechnology
    • /
    • v.21 no.9
    • /
    • pp.893-902
    • /
    • 2011
  • Endophytic fungi are little known for their role in gibberellins (GAs) synthesis and abiotic stress resistance in crop plants. We isolated 10 endophytes from the roots of field-grown soybean and screened their culture filtrates (CF) on the GAs biosynthesis mutant rice line - Waito-C. CF bioassay showed that endophyte GMH-1B significantly promoted the growth of Waito-C compared with controls. GMH-1B was identified as Penicillium minioluteum LHL09 on the basis of ITS regions rDNA sequence homology and phylogenetic analyses. GC/MS-SIM analysis of CF of P. minioluteum revealed the presence of bioactive $GA_4$ and $GA_7$. In endophyte-soybean plant interaction, P. minioluteum association significantly promoted growth characteristics (shoot length, shoot fresh and dry biomasses, chlorophyll content, and leaf area) and nitrogen assimilation, with and without sodium chloride (NaCl)-induced salinity (70 and 140 mM) stress, as compared with control. Field-emission scanning electron microcopy showed active colonization of endophyte with host plants before and after stress treatments. In response to salinity stress, low endogenous abscisic acid and high salicylic acid accumulation in endophyte-associated plants elucidated the stress mitigation by P. minioluteum. The endophytic fungal symbiosis of P. minioluteum also increased the daidzein and genistein contents in the soybean as compared with control plants, under salt stress. Thus, P. minioluteum ameliorated the adverse effects of abiotic salinity stress and rescued soybean plant growth by influencing biosynthesis of the plant's hormones and flavonoids.

Secondary Metabolites Produced by Endophytic Fungus, Arthrinium phaeospermum (내생균 Arthrinium phaeospermum이 생산하는 이차대사산물)

  • Xia, Xuekui;Shim, Sang Hee
    • Korean Journal of Pharmacognosy
    • /
    • v.47 no.3
    • /
    • pp.217-221
    • /
    • 2016
  • Endophytic fungi have yielded a variety of secondary metabolites so far. In the course of the project to find bioactive secondary metabolites from cultures of endophytic fungi, an isolate of Arthrinium phaeospermum (JS 0567) was selected for chemical investigation. A large scale culture of this strain in rice media was extracted with an organic solvent and the extract was subjected to a serious of chromatography, which led to six metabolites. Their chemical structures were elucidated as 2,3,6,8-tetrahydroxy-1-methylxanthone(1), 2,3,4,6,8-pentahydroxy-1-methylxanthone(2), 3,4,6,8-tetrahydroxy-1-methylxanthone(3), 3,6,8-trihydroxy-1-methylxanthone(4), 2,4,2',4',6'-pentahydroxy-6-methylbenzophenone(5), and 5,7-di hydroxy-3-methylphthalide(6) on the basis of spectroscopic data. To the best of our knowledge, this is the first study on the secondary metabolites from Arthrinium phaeospermum.

Isolation and Identification of Rice Root Endophytic Antagonistic Serratia marcescens (벼 뿌리 내생 항균성 Serratia marcescens의 분리 및 동정)

  • Lee, Sook-Kyung;Song, Wan-Yeob;Kim, Hyung-Moo
    • Research in Plant Disease
    • /
    • v.10 no.1
    • /
    • pp.63-68
    • /
    • 2004
  • Twenty-three strains of Serratia sp., isolated from surface-sterilized rice roots collected in Chonbuk and Chungnam province, were identified and characterized. They were Gram-negative, rod shaped and red pigmented typically and their endophytism was confirmed by inoculation and reisolation of the strains in planta. Their antifungal activity against 4 rice pathogenic fungi was compared and ranged from 62.4 to 85.2% against Rhizoctonia solani and 68.0 to 88.5% against Pyricularia grisea. Among the 23 strains tested, strain Rsm220 showed the strongest inhibition activity against 4 pathogenic fungi. The strain was, therefore, selected as a biocontrol candidate for both the pathogens and its bacteriological characteristics and 165 rDNA sequences were analyzed. Phenotypic and biochemical characteristics of the selected Rsm220 were highly related to the type strain of S. marcescens and 165 rDNA sequencing of Rsm220 showed a homology of 98.2% to the type strain of S. marcescens. The strain Rsm220 was identified as S. marcescens and the inhibition result of this endophytic strain indicates that it is a potential biocontrol agent for R. solani and R grisea.

Griseofulvin from Xylaria sp. Strain F0010, an Endophytic Fungus of Abies holophylla and its Antifungal Activity Against Plant Pathogenic Fungi

  • PARK, JOONG-HYEOP;CHOI, GYUNG-JA;LEE, SEON-WOO;LEE, HYANG-BURM;KIM, KYOUNG-MO;JUNG, HACK-SUNG;JANG, KYOUNG-SOO;CHO, KWANG-YUN;KIM, JIN-CHEOL
    • Journal of Microbiology and Biotechnology
    • /
    • v.15 no.1
    • /
    • pp.112-117
    • /
    • 2005
  • Abstract Griseofulvin has been used as an antifungal antibiotic for the treatment of mycotic diseases of humans and veterinary animals. The purpose of this work was to identify a griseofulvin-producing endophytic fungus from Abies holophylla and evaluate its in vivo antifungal activity against plant pathogenic fungi. Based on nuclear ribosomal ITS1-5.8SITS2 sequence analysis, the fungus was identified and labeled as Xylaria sp. F0010. Two antifungal substances were purified from liquid cultures of Xylaria sp. F0010, and their chemical identities were determined to be griseofulvin and dechlorogriseofulvin through mass and NMR spectral analyses. Compared to dechlorogriseofulvin, griseofulvin showed high in vivo and in vitro antifungal activity, and effectively controlled the development of rice blast (Magnaporthe grisea), rice sheath blight (Corticium sasaki), wheat leaf rust (Puccinia recondita), and barley powdery mildew (Blumeria graminis f. sp. hordei), at doses of 50 to 150 ${\mu}$g/ml, depending on the disease. This is the first report on the production of griseofulvin and dechlorogriseofulvin by Xylaria species.

Isolation and Characterization of Endophytic Bacteria from Rice Root Cultivated in Korea (한반도 중부지방의 벼 뿌리로부터 내생 세균의 분리와 특성 분석)

  • Park, Soo-Young;Yang, Sung-Hyun;Choi, Soo-Keun;Kim, Ji-Hyeon;Kim, Jong-Guk;Park, Seung-Hwan
    • Microbiology and Biotechnology Letters
    • /
    • v.35 no.1
    • /
    • pp.1-10
    • /
    • 2007
  • The 44 endophytic bacterial strains were isolated from surface-sterilized root of rice cultivated in seven different locations of Chungcheong province, Korea. Each isolate was introduced into rice seedlings grown gnotobiotically by inoculating scissor-cut first true leaf with cell suspensions, and the colonization capacity of each isolate in root tissue was analyzed at 7 days after inoculation. Sixteen out of 44 isolates were re-isolated from root successfully with the frequency of $10^{3-5}$ CFU/g tissue. Interestingly, seven out of 16 isolates were identified as Burkholderia species. The identity between inoculated strains and re-isolates was confirmed by genomic finger-printing and 16S rDNA sequence analysis. By a confocal laser scanning microscopic observation it was revealed that KJ001 strain, one of the sixteen isolates tagged with gfp colonized in root tissue especially around xylem. Six out of seven Burkholderia strains obtained in this study showed antagonizing activities against seven different fungal pathogens, contain nifH gene, and five of them enhanced growth of cucumber over 30%. The isolates showed no hypersensitive response on tobacco leaves and no pathogenecity in rice. From these results it was found that the endophytic Burkholderia strains will be useful in agriculture to develop a biocontrol agent or a bio-fertilizer.

Identification and Characterization of an Endophytic Strain of Streptomyces from Rice Roots (Orysa sativa L.) (벼(Orysa sativa L.) 뿌리로부터 분리된 내생 Streptomyces 균주의 동정 및 특성)

  • Kim, Jae-Heon;Lee, Jun-Kwan
    • Korean Journal of Microbiology
    • /
    • v.47 no.4
    • /
    • pp.375-380
    • /
    • 2011
  • We isolated an endophytic actionmycete from root tissues of rice plant collected from paddy field near Dankook University, Cheonan, Korea. Surface sterilized roots were laid on the selective agar plates and incubated. The powdery actinomycete colonies appeared on the root surface after four weeks incubation. We isolated a strain JK-5 among them and could determine its taxonomical position as Streptomyces diastaticus subsp. ardesiacus by using 16S ribosomal DNA sequencing. The chemotaxonomical and morphological studies confirmed the taxonomical position of the strain JK-5. The shape of aerial hyphae was flexible and they contained spore chains with more than 30 smooth spherical spores per chain. Cell walls contained LL-diaminopimelic acid. There was no characteristic sugar in whole-cell hydrolysates. The major fatty acids were anteiso-15:0, anteiso-17:0 and iso-16:0. The specific menaquinones, MK-9 ($H_6$), MK-9 ($H_8$), were detected. The GC content was 72%. Antifungal activities of the strain JK-5 were relatively strong against fungal plant pathogens. The endophytic growth of the strain JK-5 was confirmed by SEM observation of the root and stem of the infected rice plant.

Crossbreeding and parental lineage influences the diversity and community structure of rice seed endophytes

  • Walitang, Denver I.;Halim, MD Abdul;Kang, Yeongyeong;Kim, Yongheon;Sa, Tongmin
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2017.06a
    • /
    • pp.161-161
    • /
    • 2017
  • Seed endophytes are very remarkable groups of bacteria for their unique abilities of being vertically transmitted and conserved. As plants attain hybrid vigor and heterosis in the process of crossbreeding, this might also lead to the changes in the community structure and diversity of plant endophytes in the hybrid plants ultimately affecting the endophytes of the seeds. It would be interesting to characterize how seed endophyte composition change over time. The objective of this study is to gain insights into the influence of natural crossbreeding and parental lineage in the seed bacterial endophytic communities of two pure inbred lines exploring contributions of the two most important sources of plant endophytes - colonization from external sources and vertical transmission via seeds. Total genomic DNA was isolated from rice seeds and bacterial DNA was selectively amplified by PCR. The diversity of endophytic bacteria was studied through Terminal-Restriction Fragment Length Polymorphism (T-RFLP) analysis. Diversity between the original parents and the pure inbred line may show significant differences in terms of richness, evenness and diversity indices. Heat maps reveal astonishing contributions of both or either parents (IR29 ${\times}$ Pokkali and AT401 ${\times}$ IR31868) in the shaping of the bacterial seed endophytes of the hybrid, FL478 and IC32, respectively. Most of the T-RFs of the subsequent pure inbred line could be traced to any or both of the parents. Comparison of common and genotype-specific T-RFs of parents and their offspring reveals that majority of the T-RFs are shared suggesting higher transmission of bacterial communities common to both parents. The parents influence the bacterial community of their offspring. Unique T-RFs of the offspring also suggest external sources of colonization particularly as the seeds are cultivated in different ecogeographical locations. This study showed that host parental lines contributed greatly in the shaping of bacterial seed endophytes of their offspring. It also revealed transmission and potential conservation of core seed bacterial endophytes that generally become the dominant microbiota in the succeeding generations of plant hosts.

  • PDF