• 제목/요약/키워드: Rice endophyte

검색결과 9건 처리시간 0.022초

Changes in Endophyte Communities across the Different Plant Compartments in Response to the Rice Blast Infection

  • Mehwish Roy;Sravanthi Goud Burragoni;Junhyun Jeon
    • The Plant Pathology Journal
    • /
    • 제40권3호
    • /
    • pp.299-309
    • /
    • 2024
  • The rice blast disease, caused by the fungal pathogen, Magnaporthe oryzae (syn. Pyricularia oryzae), poses a significant threat to the global rice production. Understanding how this disease impacts the plant's microbial communities is crucial for gaining insights into host-pathogen interactions. In this study, we investigated the changes in communities of bacterial and fungal endophytes inhabiting different compartments in healthy and diseased plants. We found that both alpha and beta diversities of endophytic communities do not change significantly by the pathogen infection. Rather, the type of plant compartment appeared to be the main driver of endophytic community structures. Although the overall structure seemed to be consistent between healthy and diseased plants, our analysis of differentially abundant taxa revealed the specific bacterial and fungal operational taxonomic units that exhibited enrichment in the root and leaf compartments of infected plants. These findings suggest that endophyte communities are robust to the changes at the early stage of pathogen infection, and that some of endophytes enriched in infected plants might have roles in the defense against the pathogen.

Seed-born Burkholderia glumae Infects Rice Seedling and Maintains Bacterial Population during Vegetative and Reproductive Growth Stage

  • Pedraza, Luz Adriana;Bautista, Jessica;Uribe-Velez, Daniel
    • The Plant Pathology Journal
    • /
    • 제34권5호
    • /
    • pp.393-402
    • /
    • 2018
  • Rice world production is affected due to the growing impact of diseases such as bacterial panicle blight, produced by Burkholderia glumae. The pathogen-induced symptoms include seedling rot, grain rot and leafsheath browning in rice plants. It is currently recognized the entrance of this pathogen to the plant, from infected seeds and from environmental sources of the microorganism. However, it is still not fully elucidated the dynamics and permanence of the pathogen in the plant, from its entry until the development of disease symptoms in seedlings or panicles. In this work it was evaluated the infection of B. glumae rice plants, starting from inoculated seeds and substrates, and its subsequent monitoring after infection. Various organs of the plant during the vegetative stage and until the beginning of the reproductive stage, were evaluated. In both inoculation models, the bacteria was maintained in the plant as an endophyte between $1{\times}10^1$ and $1{\times}10^5cfu$ of B. $glumae.g^{-1}$ of plant throughout the vegetative stage. An increase of bacterial population towards initiation of the panicle was observed, and in the maturity of the grain, an endophyte population was identified in the flag leaf at $1{\times}10^6cfu$ of B. $glumae.g^{-1}$ fresh weight of rice plant, conducting towards the symptoms of bacterial panicle blight. The results found, suggest that B. glumae in rice plants developed from infected seeds or from the substrate, can colonize seedlings, establishing and maintaining a bacterial population over time, using rice plants as habitat to survive endophyticly until formation of bacterial panicle blight symptoms.

Salinity Stress Resistance Offered by Endophytic Fungal Interaction Between Penicillium minioluteum LHL09 and Glycine max. L

  • Khan, Abdul Latif;Hamayun, Muhammad;Ahmad, Nadeem;Hussain, Javid;Kang, Sang-Mo;Kim, Yoon-Ha;Adnan, Muhammad;Tang, Dong-Sheng;Waqas, Muhammad;Radhakrishnan, Ramalingam;Hwang, Young-Hyun;Lee, In-Jung
    • Journal of Microbiology and Biotechnology
    • /
    • 제21권9호
    • /
    • pp.893-902
    • /
    • 2011
  • Endophytic fungi are little known for their role in gibberellins (GAs) synthesis and abiotic stress resistance in crop plants. We isolated 10 endophytes from the roots of field-grown soybean and screened their culture filtrates (CF) on the GAs biosynthesis mutant rice line - Waito-C. CF bioassay showed that endophyte GMH-1B significantly promoted the growth of Waito-C compared with controls. GMH-1B was identified as Penicillium minioluteum LHL09 on the basis of ITS regions rDNA sequence homology and phylogenetic analyses. GC/MS-SIM analysis of CF of P. minioluteum revealed the presence of bioactive $GA_4$ and $GA_7$. In endophyte-soybean plant interaction, P. minioluteum association significantly promoted growth characteristics (shoot length, shoot fresh and dry biomasses, chlorophyll content, and leaf area) and nitrogen assimilation, with and without sodium chloride (NaCl)-induced salinity (70 and 140 mM) stress, as compared with control. Field-emission scanning electron microcopy showed active colonization of endophyte with host plants before and after stress treatments. In response to salinity stress, low endogenous abscisic acid and high salicylic acid accumulation in endophyte-associated plants elucidated the stress mitigation by P. minioluteum. The endophytic fungal symbiosis of P. minioluteum also increased the daidzein and genistein contents in the soybean as compared with control plants, under salt stress. Thus, P. minioluteum ameliorated the adverse effects of abiotic salinity stress and rescued soybean plant growth by influencing biosynthesis of the plant's hormones and flavonoids.

내생균 Arthrinium phaeospermum이 생산하는 이차대사산물 (Secondary Metabolites Produced by Endophytic Fungus, Arthrinium phaeospermum)

  • 하설규;심상희
    • 생약학회지
    • /
    • 제47권3호
    • /
    • pp.217-221
    • /
    • 2016
  • Endophytic fungi have yielded a variety of secondary metabolites so far. In the course of the project to find bioactive secondary metabolites from cultures of endophytic fungi, an isolate of Arthrinium phaeospermum (JS 0567) was selected for chemical investigation. A large scale culture of this strain in rice media was extracted with an organic solvent and the extract was subjected to a serious of chromatography, which led to six metabolites. Their chemical structures were elucidated as 2,3,6,8-tetrahydroxy-1-methylxanthone(1), 2,3,4,6,8-pentahydroxy-1-methylxanthone(2), 3,4,6,8-tetrahydroxy-1-methylxanthone(3), 3,6,8-trihydroxy-1-methylxanthone(4), 2,4,2',4',6'-pentahydroxy-6-methylbenzophenone(5), and 5,7-di hydroxy-3-methylphthalide(6) on the basis of spectroscopic data. To the best of our knowledge, this is the first study on the secondary metabolites from Arthrinium phaeospermum.

벼 뿌리 내생 항균성 Serratia marcescens의 분리 및 동정 (Isolation and Identification of Rice Root Endophytic Antagonistic Serratia marcescens)

  • 이숙경;송완엽;김형무
    • 식물병연구
    • /
    • 제10권1호
    • /
    • pp.63-68
    • /
    • 2004
  • 벼에서 문제시되는 도열병과 잎집무의마름병을 생물학적으로 방제하기 위해 병원균과 생태학적 지위가 비슷한 벼 뿌리에서 내생하는 S. marcescens 23 균주를 분리하였다. 선발 균주들을 공시하여 R. solani와 P. grisea에 대한 길항능력을 검정하여 R. solani와 P. grisea에 각각 83.9%. 88.3%의 높은 억제율을 보인 RSm220 균주를 선발하였다. 선발된 RSm220은 생리ㆍ생화학적 특성 검정결과 S. marcescens type strain과 높은 상관성을 나타내었고. 16S rDNA sequencing에 의한 계통 분석에 의해 S. marcescens의 16S rDNA sequence에 98.2% 유사성을 나타내어 S. marcescens로 동정되었다 내생성 S. marcescens RSm220은 벼 도열병과 잎집무늬마름병에 대한 생물학적 방제제로의 사용이 가능할 것으로 사료된다.

Griseofulvin from Xylaria sp. Strain F0010, an Endophytic Fungus of Abies holophylla and its Antifungal Activity Against Plant Pathogenic Fungi

  • PARK, JOONG-HYEOP;CHOI, GYUNG-JA;LEE, SEON-WOO;LEE, HYANG-BURM;KIM, KYOUNG-MO;JUNG, HACK-SUNG;JANG, KYOUNG-SOO;CHO, KWANG-YUN;KIM, JIN-CHEOL
    • Journal of Microbiology and Biotechnology
    • /
    • 제15권1호
    • /
    • pp.112-117
    • /
    • 2005
  • Abstract Griseofulvin has been used as an antifungal antibiotic for the treatment of mycotic diseases of humans and veterinary animals. The purpose of this work was to identify a griseofulvin-producing endophytic fungus from Abies holophylla and evaluate its in vivo antifungal activity against plant pathogenic fungi. Based on nuclear ribosomal ITS1-5.8SITS2 sequence analysis, the fungus was identified and labeled as Xylaria sp. F0010. Two antifungal substances were purified from liquid cultures of Xylaria sp. F0010, and their chemical identities were determined to be griseofulvin and dechlorogriseofulvin through mass and NMR spectral analyses. Compared to dechlorogriseofulvin, griseofulvin showed high in vivo and in vitro antifungal activity, and effectively controlled the development of rice blast (Magnaporthe grisea), rice sheath blight (Corticium sasaki), wheat leaf rust (Puccinia recondita), and barley powdery mildew (Blumeria graminis f. sp. hordei), at doses of 50 to 150 ${\mu}$g/ml, depending on the disease. This is the first report on the production of griseofulvin and dechlorogriseofulvin by Xylaria species.

한반도 중부지방의 벼 뿌리로부터 내생 세균의 분리와 특성 분석 (Isolation and Characterization of Endophytic Bacteria from Rice Root Cultivated in Korea)

  • 박수영;양성현;최수근;김지현;김종국;박승환
    • 한국미생물·생명공학회지
    • /
    • 제35권1호
    • /
    • pp.1-10
    • /
    • 2007
  • 한반도 중부지방인 충청남북도 7개 지역에서 재배되고 있는 벼 시료 21점을 채집하여 이들의 뿌리를 표면살균 한 후 내생균을 44주 분리하고 내생성 검정 시스템을 통해 정착력이 상대적으로 우수한 균주를 최종 16주 확보 하였다. 이들의 분리빈도는 뿌리 생체중 1g당 $10^{3-5}$ CFU로 나타났다. 흥미롭게도 이중 7주가 Eurkholderia 속 균으로 동정되어 기존의 다른 벼 내생세균 연구 결과와는 다른 특징을 보였다. 또한 GFP tagging 방법을 이용하여 분리균주 중 하나인 Enterobacter sp. KJ001 균주에 대해 뿌리조직 내 colonization 위치를 확인해본 결과 뿌리 조직 중 관다발 주변에 군락을 이루고 있음을 관찰하였다. Burkholderia 분리주들은 국내 재배 벼에서 높은 빈도로 분리되며 in vitro상에서 광범위한 진균성 식물병원균에 대해 우수한 길항력과 더불어 대부분 질소고정 관련 유전자인 nifH를 가지는 점으로 보아 질소고정에 의해 식물생육에 도움을 줄 수 있을 것으로 예측되며 실제로 오이 유묘의 생장을 30% 이상 촉진하는 효과를 보여 식물병 억제 및 감소와 더불어 작물의 생장 촉진 및 생산성 증대에 활용가치가 높은 내생균으로 사료된다.

벼(Orysa sativa L.) 뿌리로부터 분리된 내생 Streptomyces 균주의 동정 및 특성 (Identification and Characterization of an Endophytic Strain of Streptomyces from Rice Roots (Orysa sativa L.))

  • 김재헌;이준관
    • 미생물학회지
    • /
    • 제47권4호
    • /
    • pp.375-380
    • /
    • 2011
  • 천안의 단국대학교 근처에서 채취된 벼 뿌리로부터 내생 방선균 한 주를 분리 동정하였다. 표면 살균된 벼 뿌리를 분리 배지 위에 올려 놓고 배양하면 4주 후에 뿌리 표면에 형성된 방선균 콜로니를 볼 수 있었다. 이 중에서 한 균주 JK-5를 분리하여 동정하였다. 16S rDNA 염기서열을 확인한 결과 이 분리균주 JK-5는 Streptomyces diastaticus subsp. ardesiacus와 동일한 균주였다. 형태학적 관찰과 화학분류학적 결과에 의해 분리균주 JK-5의 분류학적 위치를 확인하였다. 기중균사의 형태는 flexible하며 포자사슬은 타원형의 약 30개 정도의 매끄러운 포자로 이루어 졌다. 세포벽은 L,L-diaminopimelic acid를 포함하고 있었다. 당 분석에서는 특이적인 당이 발견되지 않았다. 지방산으로는 anteiso-15:0, anteiso-17:0, iso-16:0 가 주요 성분이었다. 퀴논 분석결과 MK-9 ($H_6$)와 MK-9 ($H_8$)이 주요 성분으로 나타났다. GC 함량은 72%로 측정되었다. 식물병원성 곰팡이에 대하여 비교적 높은 항진균활성을 보여 주었다. 벼에 감염된 분리균주 JK-5가 뿌리와 줄기에서 균사체를 형성하며 왕성하게 생장하는 것을 SEM을 통하여 확인하였다.

Crossbreeding and parental lineage influences the diversity and community structure of rice seed endophytes

  • Walitang, Denver I.;Halim, MD Abdul;Kang, Yeongyeong;Kim, Yongheon;Sa, Tongmin
    • 한국작물학회:학술대회논문집
    • /
    • 한국작물학회 2017년도 9th Asian Crop Science Association conference
    • /
    • pp.161-161
    • /
    • 2017
  • Seed endophytes are very remarkable groups of bacteria for their unique abilities of being vertically transmitted and conserved. As plants attain hybrid vigor and heterosis in the process of crossbreeding, this might also lead to the changes in the community structure and diversity of plant endophytes in the hybrid plants ultimately affecting the endophytes of the seeds. It would be interesting to characterize how seed endophyte composition change over time. The objective of this study is to gain insights into the influence of natural crossbreeding and parental lineage in the seed bacterial endophytic communities of two pure inbred lines exploring contributions of the two most important sources of plant endophytes - colonization from external sources and vertical transmission via seeds. Total genomic DNA was isolated from rice seeds and bacterial DNA was selectively amplified by PCR. The diversity of endophytic bacteria was studied through Terminal-Restriction Fragment Length Polymorphism (T-RFLP) analysis. Diversity between the original parents and the pure inbred line may show significant differences in terms of richness, evenness and diversity indices. Heat maps reveal astonishing contributions of both or either parents (IR29 ${\times}$ Pokkali and AT401 ${\times}$ IR31868) in the shaping of the bacterial seed endophytes of the hybrid, FL478 and IC32, respectively. Most of the T-RFs of the subsequent pure inbred line could be traced to any or both of the parents. Comparison of common and genotype-specific T-RFs of parents and their offspring reveals that majority of the T-RFs are shared suggesting higher transmission of bacterial communities common to both parents. The parents influence the bacterial community of their offspring. Unique T-RFs of the offspring also suggest external sources of colonization particularly as the seeds are cultivated in different ecogeographical locations. This study showed that host parental lines contributed greatly in the shaping of bacterial seed endophytes of their offspring. It also revealed transmission and potential conservation of core seed bacterial endophytes that generally become the dominant microbiota in the succeeding generations of plant hosts.

  • PDF