• Title/Summary/Keyword: Rice el

Search Result 23, Processing Time 0.015 seconds

Estimation of Rumen Gas Volume by Dilution Technique in Sheep Given Two Silages at Different Levels of Feeding

  • Sekine, J.;Kamel, Hossam E.M.;Fadel El-Seed, Abdel Nasir M.A.;Hishinuma, M.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.16 no.3
    • /
    • pp.380-383
    • /
    • 2003
  • The gas dilution technique was used to evaluate the possibility of estimating the volume of gaseous phase in the rumen from its composition in sheep given rice whole crop silage (RWS) or dent corn silage (DCS) at a level of maintenance (M) or 2 M, and in the course of fasting. The rumen gas composition was determined at 2 and 7.5 h after morning feeding. Nitrogen gas was injected by using an airtight syringe into the rumen immediately after collecting the rumen gas sample as a control. Then rumen gas samples were collected at 5, 10, 20, 40 and 60 min. after injection. Dry-matter intakes were $42g/kg^{0.75}$ and $57g/kg^{0.75}$ for DCS, and $36g/kg^{0.75}$ and $59g/kg^{0.75}$ for RWS, at 1 M and 2 M levels, respectively. Animals ingested both silages about 20% less than expected at 2 M level. The rumen gas composition did not differ significantly between 2 h and 7.5 h after feeding except for $N_2$. Content of $CO_2$ in gas composition was significantly higher at 2 M level than at 1 M (p<0.05) for both RWS and DCS, whereas $CH_4$ showed no significant difference between feeding levels. At both feeding levels, $CO_2$ showed a higher (p<0.05) percentage in DCS than RWS. A dilution technique by using $N_2$ injection is not appropriate for the determination of gas production in vivo, unless the rate of rumen gas turnover is considered. Changes in composition at fasting indicate that the rumen fermentation may reach the lowest level after 72 h fasting for sheep given silage as their sole diet.

Proteomic Analysis of Proteins Increased or Reduced by Ethanol of Lactobacillus plantarum ST4 Isolated from Makgeolli, Traditional Korean Rice Wine

  • Lee, Seung-Gyu;Lee, Kang-Wook;Park, Tae-Heung;Park, Ji-Yeong;Han, Nam-Soo;Kim, Jeong-Hwan
    • Journal of Microbiology and Biotechnology
    • /
    • v.22 no.4
    • /
    • pp.516-525
    • /
    • 2012
  • LAB were isolated from makgeolli locally produced around Jinju, Gyeongnam, S. Korea during spring of 2011. Randomly selected 11 isolates from MRS agar plates were identified first by API CHL 50 kits and then 16S rRNA gene sequencing. All 11 isolates were identified as Lactobacillus plantarum. Among them, ST4 grew in MRS broth with ethanol up to 10%, showing the highest alcohol resistance. L. plantarum ST4 was moderately resistant against acid and bile salts. When cellular proteins of L. plantarum ST4 under ethanol stress were analyzed by two-dimensional gel electrophoresis (2DE), the intensities of 6 spots increased, whereas 22 spots decreased at least 2-fold. Those 28 spots were identified by peptide mass fingerprinting (PMF). FusA2 (elongation factor G) increased 18.8-fold (6% ethanol) compared with control. Other proteins were AtpD (ATP synthase subunit beta), DnaK, GroEL, Tuf (elongation factor Tu), and Npr2 (NADH peroxidase), respectively. Among the 22 proteins decreased in intensities, lactate dehydrogenases (LdhD and LdhL1) were included.

A study on the vulnerability of field water supply using public groundwater wells as irrigation in drought-vulnerable areas with a focus on the Dangjin-si, Yesan-gun, Cheongyang-gun, and Goesan-gun regions in South Korea

  • Shin, Hyung Jin;Lee, Jae Young;Jo, Sung Mun;Cha, Sang Sun;Hwang, Seon-Ah;Nam, Won-Ho;Park, Chan Gi
    • Korean Journal of Agricultural Science
    • /
    • v.48 no.1
    • /
    • pp.103-117
    • /
    • 2021
  • The severe effects of climate change, such as global warming and the El Niño phenomenon, have become more prevalent. In recent years, natural disasters such as drought, heavy rain, and typhoons have taken place, resulting in noticeable damage. Korea is affected by droughts that cause damage to rice fields and crops. Societal interest in droughts is growing, and measures are urgently needed to address their impacts. As the demand for high-quality agricultural products expands, farmers have become more interested in water management, and the demand for field irrigation is increasing. Therefore, we investigated water demand in the irrigation of drought-vulnerable crops. Specifically, we determined the water requirements for crops including cabbage, red pepper, apple, and bean in four regions by calculating the consumptive water use (evapotranspiration), effective rainfall, and irrigation capacity. The total consumptive water use (crop evapotranspiration) estimates for Dangjin-si (cabbage), Yesan-gun (apple), Cheongyang-gun (pepper) in Chungnam, and Goesan-gun (bean) in Chungbuk were 33.5, 206.4, 86.1, and 204.5 mm, respectively. The volumes of groundwater available in the four regions were determined to be the following: Dangjin-si, 4,968,000 m3; Yesan-gun, 4,300,000 m3; Cheongyang-gun, 1,114,000 m3, and Goesan-gun, 3,794,000 m3. The annual amounts available for the representative crops, compared to the amount of evapotranspiration, were 313.9% in Dangjin-si, 29.5% in Yesan-gun, 56.1% in Cheongyang-gun, and 20.1% in Goesan-gun.