• Title/Summary/Keyword: Rice Productivity

Search Result 452, Processing Time 0.033 seconds

Transiently Experessed Salt-Stress Protection of Rice by Transfer of a Bacterial Gene, mtlD

  • Lee, Eun-A;Kim, Jung-Dae;Cha, Yoo-Kyung;Woo, Dong-Ho;Han, In-Seob
    • Journal of Microbiology and Biotechnology
    • /
    • v.10 no.3
    • /
    • pp.415-418
    • /
    • 2000
  • Productivity of a rice plant is greatly influenced by salt stress. One of the ways to achieve tolerance to salinity is to transfer genes encoding protective enzymes from other organisms, such as microorganisms. The bacterial gene, mtlD, which encodes mannitol-1-phosphate dehydrogenase (Mtl-DH), was introduced to the cytosol of a rice plant by an imbibition technique to overproduce mannitol. The germination and survival rate of the imbibed rice seeds were markedly increased by transferring the mtlD gene when it was delivered in either a pBIN19 or pBmin binary vector. When a polymerase chain reaction was performed with the genomic DNAs of the imbibed rice leaves as a template and with mtlD-specific primers, several lines were shown to contain an exogenous mtlD DNA. However, a reverse transcription (RT)-PCR analysis revealed that not all of them showed an expression of this foreign gene. This paper demonstrates that the growth and germination of rice plants transiently transformed with the bacterial gene, mtlD, are enhanced and these enhancements may have resulted from the experssion of the mtlD gene. The imbibition method empolyed in this study fulfills the requirements for testing the function of such a putative gene in vivo prior to the production of a stable transgenic plant.

  • PDF

Variation in root system developmental responses of irrigated and rainfed philippine rice varieties to water stressed environments

  • Cabral, Maria Corazon J.;Niones, Jonathan M.;Suralta, Roel R.;Yamauchi, Akira
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2017.06a
    • /
    • pp.230-230
    • /
    • 2017
  • About 200 rice varieties for irrigated and rainfed lowland ecosystems were released in the Philippines, which were bred for improving yield under favorable conditions. Root plasticity plays key roles in maintaining crop productivity under abiotic stressed conditions. We hypothesized that some of these varieties possess root plasticity traits in response to water stressed conditions. This study aimed to evaluate the root system development and dry matter production of 14 randomly selected rice varieties (6 irrigated lowland and 9 rainfed varieties) under progressive drought (PDR) and soil moisture fluctuations (SMF) stress conditions. Two experiments were done in rootbox and line source sprinkler systems (LSS). Each of the varieties was subjected to well-watered (WW), PDR and SMF conditions during vegetative stage in rootbox system while the same genotypes were subjected to different intensities of drought stress under LSS. Under rootbox system, PDR and SMF significantly reduced shoot dry matter production in all varieties relative to their WW controls. Among varieties, NSIC Rc238 (irrigated lowland) showed the least reduction in shoot dry weight (SDW) in both PDR (by 11.8%) and SMF (by 26.9%) conditions. Less reductions in SDW of NSICRc238 were partially attributed to the promotion of L-type lateral roots, thus increasing total lateral root length by 24.2% and 30.7% under PDR and SMF, respectively. In LSS, SDW of NSIC Rc238 under mild drought stress (16-21% soil moisture content (SMC) had 31.8% reduction relative to its WW control (${\geq}22%SMC$) and had lower sensitivity drought index. Compared with the IR64 susceptible check and NSIC Rc9 tolerant check, NSIC Rc238 had higher SDW by 90.8% and 38.6%, respectively. Furthermore, no rainfed lowland varieties included in the experiment performed well under different water stress treatments. The results implied that some other irrigated lowland rice varieties may also possess drought dehydration avoidance root plasticity traits under water-stressed growing environments.

  • PDF

QTL mapping of low-temperature germinability and identification of qLTG1 candidate genes in rice

  • Kim, Sun Ha;Shim, Kyu-Chan;Lee, Hyun-Sook;Le, Anh Quynh;Ahn, Sang-Nag
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2017.06a
    • /
    • pp.116-116
    • /
    • 2017
  • Low-temperature is one of the environmental stress factors that affect plant growth and development and consequently limit crop productivity. The control of seed germination under low-temperature is organized by many genes which are called quantitative trait loci (QTLs). High germination rate for low-temperature is an important factor of growing rice. Previously, we identified a major QTL controlling low-temperature germinability in rice using 96 introgression lines (ILs) derived from a cross between Oryza rufipogon (Rufi) and the Korean japonica cultivar, 'Hwaseongbyeo (HS)'. A $BC_3F_7$ line (TR5) showed better low-temperature germinability than its recurrent parent. TR5 was crossed with HS to develop a segregating F2:3 populations for the target QTL. Six SSR markers polymorphic between HS and Rufi were used to screen and fine map the qLTG1. The qLTG1 on chromosome 1, which accounted for 55.5% of the total phenotypic variation, confirmed that Rufi allele enhanced the low-temperature germinability. Intervals between markers CRM16 and CRM15, four candidate genes were identified. The identified candidate genes, which are encoded by a protein of unknown function, showed their direct involvement on seed germination at low-temperature. To identify genes targeted by qLTG1, we investigated the expression profiles of these candidate genes and germination behavior of qLTG1 under different stress conditions and compared to HS, Rufi, and TR5 at $13{\pm}2^{\circ}C$ for 3 days after incubation. Furthermore, transgenic rice plants will also be developed to conduct a detailed investigation on low-temperature germinability. Hence, the QTL for low-temperature germinability would be useful in rice breeding programs especially in the development of lines possessing low-temperature germinability.

  • PDF

Comparative proteome analysis of rice leaves in response to high temperature

  • Kim, Sang-Woo;Roy, Swapan Kumar;Kwon, Soo Jeong;Cho, Seong-Woo;Cho, Yong-Gu;Lee, Chul-Won;Woo, Sun-Hee
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2017.06a
    • /
    • pp.121-121
    • /
    • 2017
  • The productivity of rice has been influenced by various abiotic factors including temperature which cause to limitations to rice yield and quality. Rice yield and quality are adversely affected by high temperature globally. In the present study, four Korean four cultivars such as Dongan, Ilpum, Samkwang, Chucheong were investigated in order to explore molecular mechanisms of high temperature at seedling stage. Rice seedlings grown at $28/20^{\circ}C$ (day/night) were subjected to 7-day exposure to $38/28^{\circ}C$ for high-temperature stress, followed by 2-D based proteomic analysis on biological triplicates of each treatment. The growth characteristics demonstrated that Dongan is tolerant while Ilpum is sensitive to high-temperature stress. High temperature has an adverse effect in the seedling stage both in high temperature sensitive and tolerant cultivar. Two-dimensional gels stained with silver staining, a total of 722 differential expressed protein spots (${\geq}1.5-fold$) were identified using Progenesis SameSpot software. However, a total of 38 differentially expressed protein spots were analyzed by LTQ-FT-ICR MS. Of these, 9 proteins were significantly increased while 10 decreased under high-temperature treatment. Significant changes were associated with the proteins involved in the carbohydrate metabolism, photosynthesis, and stress responses. Proteome results revealed that high-temperature stress had an inhibitory effect on carbon fixation, ATP production, and photosynthetic machinery pathway. The expression level of mRNA is significantly correlated with the results obtained in the proteome investigation. Taken together, these findings provide a better understanding of the high-temperature resistance by proteomic approaches, providing valuable insight into improving the high-temperature stress tolerance in the global warming epoch.

  • PDF

Transcriptomic Analysis of Oryza sativa Leaves Reveals Key Changes in Response to Magnaporthe oryzae MSP1

  • Meng, Qingfeng;Gupta, Ravi;Kwon, Soon Jae;Wang, Yiming;Agrawal, Ganesh Kumar;Rakwal, Randeep;Park, Sang-Ryeol;Kim, Sun Tae
    • The Plant Pathology Journal
    • /
    • v.34 no.4
    • /
    • pp.257-268
    • /
    • 2018
  • Rice blast disease, caused by Magnaporthe oryzae, results in an extensive loss of rice productivity. Previously, we identified a novel M. oryzae secreted protein, termed MSP1 which causes cell death and pathogen-associated molecular pattern (PAMP)-triggered immune (PTI) responses in rice. Here, we report the transcriptome profile of MSP1-induced response in rice, which led to the identification of 21,619 genes, among which 4,386 showed significant changes (P < 0.05 and fold change > 2 or < 1/2) in response to exogenous MSP1 treatment. Functional annotation of differentially regulated genes showed that the suppressed genes were deeply associated with photosynthesis, secondary metabolism, lipid synthesis, and protein synthesis, while the induced genes were involved in lipid degradation, protein degradation, and signaling. Moreover, expression of genes encoding receptor-like kinases, MAPKs, WRKYs, hormone signaling proteins and pathogenesis-related (PR) proteins were also induced by MSP1. Mapping these differentially expressed genes onto various pathways revealed critical information about the MSP1-triggered responses, providing new insights into the molecular mechanism and components of MSP1-triggered PTI responses in rice.

A Study on the Composition and Enzymatic Hydrolysis of Some Agricultural Waste Products (농산폐기물(農産廢棄物)의 성분분석(成分分析) 및 효소분해(酵素分解)에 관(關)한 연구(硏究))

  • Woo, Chang-Myung;Lee, Su-Rae
    • Korean Journal of Food Science and Technology
    • /
    • v.4 no.4
    • /
    • pp.300-308
    • /
    • 1972
  • For the purpose of utilizing agricultural waste products for animal feeds, chemical analysis of some important agricultural wastes in Korea and enzymatic hydrolysis of rice hull were undertaken and summarized as follows: 1) Rice hull and straws of rice, barley and wheat were analyzed for their proximate principles and carbohydrate composition. 2) A strain of Aspergillus niger was selected as having the highest productivity of rice hull decomposing activity among many species of molds. The optimum conditions for the culture on washed wheat bran were. 3 days of culture period, 55% moisture content and neutral pH and one hour was proper for the extraction of enzymes. 3) The extent of hydrolysis of xylan and rice hull by a crude enzyme preparation from this strain was 63% and 7%, respectively, and the optimum pH for its activity was 4.0 and 4.5, respectively. 4) Enzymatic hydrolysis of rice hull was generally suppressed by gamma-ray irradiation ($0.5{\sim}5\;Mrad$, in dry state), but the effect was less by irradiation in wet state.

  • PDF

Projecting the climatic influences on the water requirements of wheat-rice cropping system in Pakistan (파키스탄 밀-옥수수 재배시스템의 기후변화를 반영한 필요수량 산정)

  • Ahmad, Mirza Junaid;Choi, Kyung-Sook
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2018.05a
    • /
    • pp.486-486
    • /
    • 2018
  • During the post green revolution era, wheat and rice were the main crops of concern to cater the food security issues of Pakistan. The use of semi dwarf high yielding varieties along with extensive use of fertilizers and surface and ground water lead to substantial increase in crop production. However, the higher crop productivity came at the cost of over exploitation of the precious land and water resources, which ultimately has resulted in the dwindling production rates, loss of soil fertility, and qualitative and quantitative deterioration of both surface and ground water bodies. Recently, during the past two decades, severe climate changes are further pushing the Pakistan's wheat-rice system towards its limits. This necessitates a careful analysis of the current crop water requirements and water footprints (both green and blue) to project the future trends under the most likely climate change phenomenon. This was done by using the FAO developed CROPWAT model v 8.0, coupled with the statistically-downscaled climate projections from the 8 Global Circulation Models (GCMs), for the two future time slices, 2030s (2021-2050) and 2060s (2051-2080), under the two Representative Concentration Pathways (RCPs): 4.5 and 8.5. The wheat-rice production system of Punjab, Pakistan was considered as a case study in exploration of how the changing climate might influence the crop water requirements and water footprints of the two major crops. Under the worst, most likely future scenario of temperature rise and rainfall reduction, the crop water requirements and water footprints, especially blue, increased, owing to the elevated irrigation demands originating from the accelerated evapotranspiration rates. A probable increase in rainfall as envisaged by some GCMs may partly alleviate the adverse impacts of the temperature rise but the higher uncertainties associated with the predicated rainfall patterns is worth considering before reaching a final conclusion. The total water footprints were continuously increasing implying that future climate would profoundly influence the crop evapotranspiration demands. The results highlighted the significance of the irrigation water availability in order to sustain and improve the wheat-rice production system of Punjab, Pakistan.

  • PDF

Production of Exopolysaccharides and İndole Acetic Acid (IAA) by Rhizobacteria and Their Potential against Drought Stress in Upland Rice

  • Tetty Marta Linda;Jusinta Aliska;Nita Feronika;Ineiga Melisa;Erwina Juliantari
    • Journal of Microbiology and Biotechnology
    • /
    • v.34 no.6
    • /
    • pp.1239-1248
    • /
    • 2024
  • Peatlands are marginal agricultural lands due to highly acidic soil conditions and poor drainage systems. Drought stress is a big problem in peatlands as it can affect plants through poor root development, so technological innovations are needed to increase the productivity and sustainability of upland rice on peatlands. Rhizobacteria can overcome the effects of drought stress by altering root morphology, regulating stress-responsive genes, and producing exopolysaccharides and indole acetic acid (IAA). This study aimed to determine the ability of rhizobacteria in upland rice to produce exopolysaccharides and IAA, identify potential isolates using molecular markers, and prove the effect of rhizobacteria on viability and vigor index in upland rice. Rhizobacterial isolates were grown on yeast extract mannitol broth (YEMB) medium for exopolysaccharides production testing and Nutrient Broth (NB)+L-tryptophan medium for IAA production testing. The selected isolates identify using sequence 16S rRNA. The variables observed in testing the effect of rhizobacteria were germination ability, vigour index, and growth uniformity. EPS-1 isolate is the best production of exopolysaccharides (41.6 mg/ml) and IAA (60.83 ppm). The isolate EPS-1 was identified as Klebsiella variicola using 16S rRNA sequencing and phylogenetic analysis. The isolate EPS-1 can increase the viability and vigor of upland rice seeds. K. variicola is more adaptive and has several functional properties that can be developed as a potential bioagent or biofertilizer to improve soil nutrition, moisture and enhance plant growth. The use of rhizobacteria can reduce dependence on the use of synthetic materials with sustainable agriculture.

Effect of Different Seeding Rates on Seed Productivity of the "Kowinearly" Cultivar of Italian ryegrass (Lolium multiflorum Lam.) in Paddy Field

  • Kim, Ki-Yong;Choi, Gi Jun;Lee, Sang-Hoon;Hwang, Tae-Young;Lee, Gi-Won;Ji, Hee Chung;Park, Sung Min
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.36 no.4
    • /
    • pp.340-343
    • /
    • 2016
  • The present study investigated the effects of different seeding rates on growth characteristics and seed productivity of the "Kowinearly" cultivar of Italian ryegrass (Lolium multiflorum Lam.) in paddy fields. Sowing Kowinearly in paddy fields under growing rice at the rates of 20, 30, 40, and 50 kg/ha resulted in seed yields of 1.57, 1.92, 2.06, and 2.09 ton/ha, respectively. Seed yield of Kowinearly was the highest at a seeding rate of 50 kg/ha (p<0.05), at which the cultivar was able to survive in winter and the weed ratio was low. Under these conditions, most growth characteristics such as winter survival (85%), weed ratio (10%), stems per square meter (1,006) were superior than those sown at other seeding rates (p<0.05). In addition, it has been reported that the economic efficiency of the 50 kg/ha seeding rate was higher than that of the other seeding rates.

Increased Production of Ginsenoside Compound K by Optimizing the Feeding of American Ginseng Extract during Fermentation by Aspergillus tubingensis

  • Song, Woo-Seok;Kim, Min-Ju;Shin, Kyung-Chul;Oh, Deok-Kun
    • Journal of Microbiology and Biotechnology
    • /
    • v.32 no.7
    • /
    • pp.902-910
    • /
    • 2022
  • The ginsenoside compound K (C-K) is widely used in traditional medicines, nutritional supplements, and cosmetics owing to its diverse pharmacological activities. Although many studies on C-K production have been conducted, fermentation is reported to produce C-K with low concentration and productivity. In the present study, addition of an inducer and optimization of the carbon and nitrogen sources in the medium were performed using response surface methodology to increase the C-K production via fermentation by Aspergillus tubingensis, a generally recognized as safe fungus. The optimized inducer and carbon and nitrogen sources were 2 g/l rice straw, 10 g/l sucrose, and 10 g/l soy protein concentrate, respectively, and they resulted in a 3.1-fold increase in the concentration and productivity of C-K (0.22 g/l and 1.52 mg/l/h, respectively) compared to those used before optimization without inducer (0.071 g/l and 0.49 mg/l/h, respectively). The feeding methods of American ginseng extract (AGE), including feeding timing, feeding concentration, and feeding frequency, were also optimized. Under the optimized conditions, A. tubingensis produced 3.96 mM (2.47 g/l) C-K at 144 h by feeding two times with 8 g/l AGE at 48 and 60 h, with a productivity of 17.1 mg/l/h. The concentration and productivity of C-K after optimization of feeding methods were 11-fold higher than those before the optimization (0.22 g/l and 1.52 mg/l/h, respectively). Thus, the optimization for the feeding methods of ginseng extract is an efficient strategy to increase C-K production. To our knowledge, this is the highest reported C-K concentration and productivity via fermentation reported so far.