• 제목/요약/키워드: Rice Paddy

Search Result 2,273, Processing Time 0.029 seconds

Determination of Bioconcentration Factor of Heavy Metal (loid)s in Rice Grown on Soils Vulnerable to Heavy Metal (loid)s Contamination

  • Lee, Seul;Kang, Dae-Won;Yoo, Ji-Hyock;Park, Sang-Won;Oh, Kyeong-Seok;Lee, Jin-Ho;Cho, Il Kyu;Moon, Byeong-Churl;Kim, Won-Il
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.50 no.2
    • /
    • pp.106-114
    • /
    • 2017
  • There is an increasing concern over heavy metal(loid) contamination of soil in agricultural areas including paddy soils. This study was conducted to determine the bioconcentration factor (BCF) for heavy metal(loid)s to brown rice grown in paddy soils vulnerable to heavy metal(loid)s contamination, for the quantitative health risk assessment to the residents living nearby the metal contaminated regions. The samples were collected from 98 sites nationwide in the year 2015. The mean and range BCF values of As, Cd, Cu, Ni, Pb, and Zn in brown rice were 0.027 (0.001 ~ 0.224), 0.143 (0.001 ~ 2.434), 0.165 (0.039 ~ 0.819), 0.028 (0.005 ~ 0.187), 0.006 (0.001 ~ 0.048), and 0.355 (0.113 ~ 1.263), respectively, with Zn showing the highest. Even though the relationship between heavy metal(loid) contents in the vulnerable soils and metal contents in brown rice collected at the same fields was not significantly correlated, the relationship between log contents of heavy metal(loid)s in the vulnerable soils and BCF of brown rice wes significantly correlated with As, Cd, Cu, and Zn in rice. In conclusion, soil environmental risk assessment for crop uptake should consider the bioconcentration factor calculated using both the initial and vulnerable heavy metal(loid) contents in the required soil and the crop cultivated in the same fields.

Dynamic Analysis of Shattering of Tongil Paddy (통일(統一)벼의 탈립(脱粒)에 관(關)한 역학적(力學的) 분석(分析))

  • Kang, Young Sun;Chung, Chang Joo
    • Journal of Biosystems Engineering
    • /
    • v.9 no.1
    • /
    • pp.11-21
    • /
    • 1984
  • This study was intended to analyze the dynamic force system which induced the shattering of paddy grains. A model to predict the shattering of paddy grains was developed, and physical quantities, such as mass distribution and rigidity of rice plant, needed for evaluating the minimum shattering forces were also measured. Under the assumption that rice plant right before harvesting is a vibratory system, the mathematical model of the vibratory system was developed and solved with the varied conditions of forcing functions. The results of the study were summarized as follows: 1. The shattering of grain occurred at the abscission layer of grain by the bending moments resulted from the impact force due to the collision of panicles of rice plant. 2. The vibratory model developed for milyang 23 rice variety was analyzed to give the natural frequencies of 7-9 Hz, which were closely related with the excitation frequencies of 4-10 Hz caused by various machine parts besides engine. Thus, avoiding the resonance should be taken into consideration in the design of the harvesting machinery. 3. It was analyzed to predict the lowest frequency that could develop the shattering when the excitation force was applied to the lower end of stem. The lowest frequency for the Milyang 23 rice variety ranged from 8.33 Hz to 11.66 Hz as the amplitude varied from 1 cm to 2.5 cm. 4. The degree of shattering depended upon the magnitude of the impact force and its application point. For Milyang 23 rice variety, the minimum impact force developing the shattering was $5g_f$ when it was applied at 1 cm above the lower end of stern and $1g_f$ when applied at 5 cm above the lower end of stem. 5. The minimum colliding velocity of the panicle, when it was on the ground that would just develop the shattering, was given as follows, $$V=\sqrt{\frac{K_t}{m_g}{\cdot}{{\phi}^2}}$$ where V : The colliding velocity of the panicle against ground to cause the shatteering of rice grain. (cm/sec) $K_t$ : The minimum spring constant for bending at the abscission layer of grain. (dyne-cm/rad) ${\phi}$ : The minimum shattering angle of grain (rad) $m_g$ : The maximum mass of grain. (g).

  • PDF

Development of a Prototype of Guidance System for Rice-transplanter

  • Zhang, Fang-Ming;Shin, Beom-Soo;Feng, Xi-Ming;Li, Yuan;Shou, Ru-Jiang
    • Journal of Biosystems Engineering
    • /
    • v.38 no.4
    • /
    • pp.255-263
    • /
    • 2013
  • Purpose: It is not easy to drive a rice-transplanter avoiding underlapped or overlapped transplanting in paddy fields. An automated guidance system for the riding-type rice-transplanter would be necessary to operate the rice-transplanter autonomously or to assist the beginning drivers as a driving aid. Methods: A prototype of guidance system was composed of embedded computers, RTK-GPS, and a power-steering mechanism. Two Kalman filters were adopted to overcome sparse positioning data (1 Hz) from the RTK-GPS. A global Kalman filter estimated the posture of rice-transplanter every one second, and a local Kalman filter calculated the posture from every new estimation of the global Kalman filter with an interval of 200 ms. A PID controller was applied to the row-following mode control. A control method of U-turning mode was developed as well. A stepping motor with a reduction gear set was used to rotate the shaft of steering wheel. Results: Test trials for U-turning and row-following modes were done in a paddy field after some parameters have been tuned at the ground speed range of 0.3 ~ 1.2 m/s. The minimum RMS error of offset was 3.13 cm at the ground speed of 0.3 m/s while the maximum RMS error was 13.01 cm at 1.2 m/s. The offset RMS error tended to increase as the ground speed increased. The target point distance, LT also affected the system performance and PID controller parameters should be adjusted on different ground speeds. Conclusions: A target angle-based PID controller plus stationary steering angle controller made it possible for the rice-transplanter to steer autonomously by following a reference line accurately and even on U-turning mode. However, as condition in paddy fields is very complicated, the system should control the ground speed that prevents it from deviating too much due to ditch and slope.

Evaluation of Greenhouse Gas Emissions using DNDC Model from Paddy Fields of 16 Local Government Levels (우리나라 16개 지자체 벼논에서 DNDC 모델을 이용한 온실가스 배출량 평가)

  • Jeong, Hyun Cheol;Lee, Jong Sik;Choi, Eun Jung;Kim, Gun Yeob;Seo, Sang Uk;So, Kyu Ho
    • Journal of Climate Change Research
    • /
    • v.5 no.4
    • /
    • pp.359-366
    • /
    • 2014
  • This research was conducted to estimate methane emission from paddy field of 16 local government levels using the DNDC(DeNitrification-DeComposition) model from 1990 to 2010. Four treatments used in DNDC model for methane emission calculations were (1) midseason drainage with rice straw, (2) midseason drainage without rice straw, (3) continuous flooding with rice straw, and (4) continuous flooding without rice straw. Methane emissions at continuous flooding with rice straw were the highest ($471kg\;C\;ha^{-1}$) while were the lowest ($187kg\;C\;ha^{-1}$) at midseason drainage without rice straw. The average methane emission for 21 years was the highest ($1,406Gg\;CO_{2-eq}$.) in Jeonnam province because of its large cultivation area. Jeju province had the highest the average methane emission per unit area due to the organic content in soil.

Estimation of Surface Runoff from Paddy Plots using an Artificial Neural Network (인공신경망 기법을 이용한 논에서의 지표 유출량 산정)

  • Ahn, Ji-Hyun;Kang, Moon-Seong;Song, In-Hong;Lee, Kyong-Do;Song, Jeong-Heon;Jang, Jeong-Ryeol
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.54 no.4
    • /
    • pp.65-71
    • /
    • 2012
  • The objective of this study was to estimate surface runoff from rice paddy plots using an artificial neural network (ANN). A field experiment with three treatment levels was conducted in the NICS saemangum experimental field located in Iksan, Korea. The ANN model with the optimal network architectures, named Paddy1901 with 19 input nodes, 1 hidden layer with 16 neurons nodes, and 1 output node, was adopted to predict surface runoff from the plots. The model consisted of 7 parameters of precipitation, irrigation rate, ponding depth, average temperature, relative humidity, wind speed, and solar radiation on the daily basis. Daily runoff, as the target simulation value, was computed using a water balance equation. The field data collected in 2011 were used for training and validation of the model. The model was trained based on the error back propagation algorithm with sigmoid activation function. Simulation results for the independent training and testing data series showed that the model can perform well in simulating surface runoff from the study plots. The developed model has a main advantage that there is no requirement for any prior assumptions regarding the processes involved. ANN model thus can be a good tool to predict surface runoff from rice paddy fields.

Microbial Risk Assessment using E. coli in UV Disinfected Wastewater Irrigation on Paddy

  • Rhee, Han-Pil;Yoon, Chun-G.;Jung, Kwang-Wook;Son, Jang-Won
    • Environmental Engineering Research
    • /
    • v.14 no.2
    • /
    • pp.120-125
    • /
    • 2009
  • Water stress has become a major concern in agriculture. Korea suffers from limited agricultural water supply, and wastewater reuse has been recommended as an alternative solution.A study was performed to examine the effects of microorganism concentration in the ponded-water of a paddy rice field with reclaimed-water irrigation for evaluating the microbial risk to farmers and neighborhoodchildren.Most epidemiological studies were performed based on an upland field, and they may not directly applicable to paddy fields. Beta-Poisson model was used to estimate the microbial risk of pathogen ingestion. Their risk value increased significantly high level after irrigation and precipitation.It implies that agricultural activities such as plowing, and fertilizing, and precipitation need be practiced a few days after irrigation considering health risks. The results about field application of the microbial risk assessment using E. coli showed difference according to monitoring time and treatment plot. Result of the microbial risk assessment showed that risk values of ground-water and reclaimed secondary waste water irrigation were lower than directly use of wastewater treatment plants' effluent. This paper should be viewed as a first step in the application of quantitative microbial risk assessment of E. coli to wastewater reuse in a paddy rice farming.

Effect on Rice Growth and Change of Inorganic Nitrogen Content in Soil by Application with Rice Bran and Mixed Expeller Cake Fertilizer on Machine Transplanting Rice Paddy Field

  • Kim, S.;Yang, C.H.;Lee, S.B.;Lee, J.H.;Kim, J.D.;Kim, S.J.;Im, I.B.
    • Korean Journal of Organic Agriculture
    • /
    • v.19 no.spc
    • /
    • pp.157-160
    • /
    • 2011
  • This study was conducted to find a method using the application of rice bran and mixed expeller cake at machine transplanting rice paddy field. Different ratios of rice bran and mixed expeller cake were sprayed as substitute of chemical fertilizer (nitrogen 90kg $ha^{-1}$) before transplanting. Nitrogen content was highest in 30th day after transplantation, and in relation to treatments the order was the following: Rice bran 1,000kg $ha^{-1}$ + Mixed expeller cake 1,374kg $ha^{-1}$ > rice bran 2,000kg $ha^{-1}$ + Mixed expeller cake 948kg $ha^{-1}$ > rice bran 3,000kg $ha^{-1}$ + Mixed expeller cake 522kg $ha^{-1}$. Number of panicle and spikelets per $m^{-2}$ was higher in rice bran 1,000kg $ha^{-1}$ + Mixed expeller cake 1,374kg $ha^{-1}$ and rice bran 2,000kg $ha^{-1}$ + Mixed expeller cake 948kg $ha^{-1}$ than in rice bran 3,000kg $ha^{-1}$ + Mixed expeller cake 522kg $ha^{-1}$ and the yields was the highest in rice bran 1,000kg $ha^{-1}$ + Mixed expeller cake 1,374kg $ha^{-1}$.

A Study on the Water Quality Management in Fallow Paddy Fields (휴경논에서의 수질관리 연구)

  • Kim Hyung-Jong;Kim Sun-Joo;Kim Phil-Shik;An Yeul;Yang Yong-Suck
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.48 no.2
    • /
    • pp.69-76
    • /
    • 2006
  • Fallow paddy areas have been increased due to the import of cheap agricultural product, and the unbalance between farming cost and rice price since 1990. The increasing fallow paddy area needs to be protected from the devastation by weed breeding for the re-cultivation. In this study, two fallow paddy fields managed with different water depth were selected for monitoring and analysing of water quality, water balance and plant body change. The managed fallow paddy fields were more effective in water quality purification and plants growth control than non-managed fallow paddy fields. And the fallow paddy field managed with some degree of water depth was the most effective field in terms of weed control.

Nutrient Loads Estimation at Paddy Field Using CREAM-PADDY Model (CREAMS-PADDY 모형을 이용한 논에서의 영양물질 부하 추정)

  • Chin, Young-Min;Park, Seung-Woo;Kim, Sang-Min;Kang, Moon-Sung;Kang, Min-Goo
    • Journal of Korean Society of Rural Planning
    • /
    • v.8 no.1 s.15
    • /
    • pp.60-68
    • /
    • 2002
  • A Modified CREAMS model, CREAMS-PADDY was developed to simulate the hydrology and nutrient transport at an irrigated rice paddy. The hydrology at a paddy was simulated by a daily water balance routine which reflects daily inflow, outflow, and water level changes. The soil erosion was simulated using modified USLE. The nutrient transport for total nitrogen and phosphorus were depicted for various phases of each constitute such as extraction, percolation, mineralization, and plant uptakes. Field monitoring was conducted to investigate the water quality changes at a paddy field at three times a week during the growing season of 1996. The proposed model simulates the water quality of the paddy reasonably well, and is found to be applicable to field conditions.

Estimation of rice growth parameters by X-band radar backscattering data

  • Kim, Yi-Hyun;Hong, Suk-Young;Lee, Hoon-Yol
    • Proceedings of the KSRS Conference
    • /
    • 2008.10a
    • /
    • pp.324-327
    • /
    • 2008
  • Microwave remote sensing has great potential, especially in monsoon Asia, since optical observations are often hampered by cloudy conditions. The radar backscattering characteristics of rice crop were investigated with a ground-based automatic scatterometer system. The system was installed inside a shelter in an experimental paddy field at the National Institute of Agricultural Science and Technology (NIAST) before transplanting. The rice cultivar was a kind of Japonica type, called Chuchung. The scatterometer system consists of X-band antennas, HP8720D vector network analyzer, RF cables, and a personal computer that controls frequency, polarization and data storage. This system automatically measures fully-polarimatric backscattering coefficients of rice crop every 10 minutes, accompanied by a digital camera that takes pictures in a fixed position with the same interval. The backscattering coefficients were calculated by applying a radar equation. Plant variables, such as leaf area index (LAI), biomass, plant height and weather conditions were measured periodically throughout the rice growth season. We have performed polarimetric decomposition of paddy data such as single, double and volume scattering to extract the scattering information effectively. We investigated the relationships between backscattering coefficients and the plant variables.

  • PDF