• Title/Summary/Keyword: Rice Morphology

Search Result 98, Processing Time 0.02 seconds

Changes in Pasting and Fluid Properties of Corn and Rice Starches after Physical Modification by Planetary Mill

  • Kim, Bum-Keun;Lee, Jun-Soo;Cho, Yong-Jin;Park, Dong-June
    • Food Science and Biotechnology
    • /
    • v.17 no.4
    • /
    • pp.814-818
    • /
    • 2008
  • Com and rice starches were physically modified by planetary mill. While native starches showed high peak viscosities (1,001 and 563 cp), it decreased largely (42 and 20 cp for rice and com starch, respectively) after 2 hr of physical modification. When two starches were co-ground, peak viscosities decreased more largely than single ground one only in 30 min, indicating the pasting properties could be easily changed by co-grinding. Especially, the higher the amount of com starch, the viscosity decreased more largely, which means that paste stability could be controlled also by changing the ratio of com and rice starch. Mean particle size increased with physical modification time since particles became spread because of shear force. There were also changes in surface morphology after physical modification. Fluid property, such as mean time to avalanche (MTA), was improved (from $6.16{\pm}0.47$ and $8.37{\pm}1.23\;sec$ to $5.47{\pm}0.78$ and $5.26{\pm}1.37\;sec$ for rice and com starch, respectively) by physical modification. Pasting property, such as swelling power, was also improved by physical modification. These mean that native starches can be applied to both conventional powder and new paste-food industry more efficiently by physical modification.

Effect of Gamma Irradiation on the Microbial and Physicochemical Properties of Ong-keun jook(Korean Whole Rice Porridge) (방사선 조사가 옹근죽(통쌀죽)의 미생물학적 및 이화학적 특성에 미치는 영향)

  • Yang, Yun-Hyoung;Oh, Sang-Hee;Kwon, Oh-Yun;Byun, Myung-Woo;Lee, Ju-Woon;Park, Soo-Cheon;Kim, Mee-Ree
    • Journal of the East Asian Society of Dietary Life
    • /
    • v.17 no.1
    • /
    • pp.130-135
    • /
    • 2007
  • Ong-keun jook(Korean whole rice porridge)is a traditional Korean porridge made with whole rice. The aim of the present study was to evaluate the effects of gamma-irradiation on the microbial and physicochemical characteristics of rice porridge gamma-irradiation, even at a 1-kGy dose, decreased the total bacteria in cooked rice porridge to lower than the detectable limit($10^2CFU/g$). The viscosity of gamma-irradiated rice porridge was decreased compared to that of control. Upon examination of granule morphology by SEM, cracks were observed on the starch granules in samples irradiated at above 5 kGy. The results of the DSC curve suggest that gamma-irradiation delayed retrogradation of cooked rice porridge. Based on the present results, gamma-irradiation was helpful for developing sterile and tube diets that are needed for ill, old or infant subjects.

  • PDF

Morphological Changes of Cooked Rice Kernel During Saccharification for Sikhe (식혜제조과정 중 밥알의 형태 변화)

  • 전은례;김경애;정난희
    • Korean journal of food and cookery science
    • /
    • v.14 no.1
    • /
    • pp.91-96
    • /
    • 1998
  • Growth of acrospire length from germinated covered barley with 1.5∼2.0 times length of buds had the highest amylase activity for 9 days at 15$^{\circ}C$. When the extraction of malt was carried out at 50$^{\circ}C$ for 3.5 hr., total sugar, reducing sugar, sweetness determined by refractometer and amylase activity were the highest, and 2.33%, 1.61%, 3.4 brix(%), 28,332 units, respectively. The sikhe saccharificated at 60$^{\circ}C$ for 8 hr. showed total sugar content increased to 3.90∼9.27% in nonwaxy rice, 4.19∼11.91% in waxy rice, and reducing sugar-content increased 3.30∼7.61% in nonwaxy rice, 3.31∼9.11% in waxy rice. Also, brix was increased to 3.6∼10.8 brix (%) in nonwaxy rice, 3.6∼12.8 brix(%) in waxy .ice, as saccharification time increased. The amylase activity was decreased as saccharification time was increased. And pH was gradually decreased according to time increase, however, it changed little after 4 hr. Morphology of cooked rice kernel during saccharification for sikhe gradually enlarged the oval for hydrolyzed starch granule by increasing saccharification time.

  • PDF

Rice Straw-Decomposing Fungi and Their Cellulolytic and Xylanolytic Enzymes

  • Lee, Sang-Joon;Jang, Yeong-Seon;Lee, Young-Min;Lee, Jae-Jung;Lee, Han-Byul;Kim, Gyu-Hyeok;Kim, Jae-Jin
    • Journal of Microbiology and Biotechnology
    • /
    • v.21 no.12
    • /
    • pp.1322-1329
    • /
    • 2011
  • Filamentous fungi colonizing rice straw were collected from 11 different sites in Korea and were identified based on characterization of their morphology and molecular properties. The fungi were divided into 25 species belonging to 16 genera, including 14 ascomycetes, one zygomycete, and one basidiomycete. Fungal cellulolytic and xylanolytic enzymes were assessed through a two-step process, wherein highly active cellulase- and/or hemicellulase-producing fungi were selected in a first screening step followed by a second step to isolate the best enzyme-producer. Twenty-five fungal species were first screened for the production of total cellulase (TC), endo-${\beta}$-1,4 glucanase (EG), and endo-${\beta}$-1,4 xylanase (XYL) using solid-state fermentation with rice straw as substrate. From this screening, six species, namely, Aspergillus niger KUC5183, A. ochraceus KUC5204, A. versicolor KUC5201, Mucor circinelloides KUC6014, Trichoderma harzianum 1 KUC5182, and an unknown basidiomycete species, KUC8721, were selected. These six species were then incubated in liquid Mandels' media containing cellulose, glucose, rice straw, or xylan as the sole carbon source and the activities of six different enzymes were measured. Enzyme production was highly influenced by media conditions and in some cases significantly increased. Through this screening process, Trichoderma harzianum 1 KUC5182 was selected as the best enzyme producer. Rice straw and xylan were good carbon sources for the screening of cellulolytic and xylanolytic enzymes.

Overexpression of NtROS2a gene encoding cytosine DNA demethylation enhances drought tolerance in transgenic rice (시토신 탈메틸화 관련 NtROS2a 유전자 도입 형질전환벼의 건조스트레스 내성 증진)

  • Choi, Jang Sun;Lee, In Hye;Cho, Yong-Gu;Jung, Yu Jin;Kang, Kwon Kyoo
    • Journal of Plant Biotechnology
    • /
    • v.43 no.3
    • /
    • pp.376-382
    • /
    • 2016
  • DNA methylation regulations gene expression, thus having pivotal roles in a myriad of physiological and pathological processes. In this study, the morphology and stress tolerance of transgenic rice overexpressing NtROS2a were determined. Transgenic plants exhibited less and shorter lateral shoots. Under various treatments, rice overexpressing NtROS2a showed alleviation of damage symptoms with higher survival rate. After drought and re-watering treatment, transgenic rice seedlings restored their normal growth. However, wild type plants could not be rescued. These findings indicate that overexpression of NtROS2a gene in rice seedlings can increase their tolerance to drought stresses.

Fabrication and property of silica nanospheres via rice-husk (왕겨를 통한 실리카 나노스페어의 제작과 특성)

  • Im, Yu-Bin;Kwk, Do-Hwan;Wahab, Rizwan;Lee, Hyun-Choel;Kim, Young-Soon;Yang, O-Bong;Shin, Hyung-Shik
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.11a
    • /
    • pp.619-619
    • /
    • 2009
  • Recently, silica nanostructures are widely used in various applicationary areas such as chemical sensors, biosensors, nano-fillers, markers, catalysts, and as a substrate for quantum dots etc, because of their excellent physical, chemical and optical properties. Additionally, these days, semiconductor silica and silicon with high purity is a key challenge because of their metallurgical grade silicon (MG-Si) exhibit purity of about 99% produced by an arc discharge method with high cast. Tremendous efforts are being paid towards this direction to reduce the cast of high purity silicon for generation of photovoltaic power as a solar cell. In this direction, which contains a small amount of impurities, which can be further purified by acid leaching process. In this regard, initially the low cast rice-husk was cultivated from local rice field and washed well with high purity distilled water and were treated with acid leaching process (1:10 HCl and $H_2O$) to remove the atmospheric dirt and impurity. The acid treated rice-husk was again washed with distilled water and dried in an oven at $60^{\circ}C$. The dried rice-husk was further annealed at different temperatures (620 and $900^{\circ}C$) for the formation of silica nanospheres. The confirmation of silica was observed by the X-ray diffraction pattern and X-ray photoelectron spectroscopy. The morphology of obtained nanostructures were analyzed via Field-emission scanning electron microscope(FE-SEM) and Transmission electron microscopy(TEM) and it reveals that the size of each nanosphares is about 50-60nm. Using the Inductively coupled plasma mass spectrometry(ICP-MS), Silica was analyzed for the amount of impurities.

  • PDF

Polyphasic Microbial Analysis of Traditional Korean Jeung-Pyun Sourdough Fermented with Makgeolli

  • Lim, Sae Bom;Tingirikari, Jagan Mohan Rao;Kwon, Ye Won;Li, Ling;Kim, Grace E.;Han, Nam Soo
    • Journal of Microbiology and Biotechnology
    • /
    • v.27 no.2
    • /
    • pp.226-233
    • /
    • 2017
  • Jeung-pyun, a fermented rice cake, is prepared by fermenting rice sourdough using makgeolli, a traditional Korean rice wine, in the presence of yeast and lactic acid bacteria (LAB). The goal of this study was to conduct biochemical and microbial analyses of five different rice sourdoughs, each fermented with a different commercial makgeolli, using culture-dependent and culture-independent approaches. All sourdough samples fermented with different makgeolli for 6.5 h showed different profiles in pH, total titratable acidity, organic acid concentration, and microbial growth. LAB belonging to different genera were identified based on colony morphology on modified MRS and sourdough bacteria agar medium. PCR-denaturing gradient gel electrophoresis analyses of the five sourdoughs showed different bands corresponding to LAB and yeast. 16S/26S rRNA gene sequence analyses of the samples confirmed that the predominant LAB in the five fermented rice doughs was Lactobacillus plantarum, Lb. pentosus, and Lb. brevis. Various other Lactobacillus spp. and Saccharomyces cerevisiae were common in all five fermented samples. This study provides comprehensive and comparative information on the microflora involved in fermentation of rice sourdough and signifies the need to develop effective starters to enrich the quality of jeung-pyun.

Variation of Tocopherol Composition and Morphology in Soybean [Glycine max (L.) Merr.] Germplasms

  • Kim, Young-Jin;Oh, Young-Jin;Cho, Sang-Kyun;Lee, Mi-Ja;Lee, Kwang-Won;Kim, Kee-Jong
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.57 no.1
    • /
    • pp.83-88
    • /
    • 2012
  • In order to get information on tocopherol content and composition in fifty-six soybean germplasms were evaluated by HPLC. From the principle component analysis, the first three components accounted for 71.6% of the total variance of tocopherol content in the germplasms. Principal component 1 showed significant correlations with all the morphological markers except 100-seed weight. Soybean germplasms were divided into three groups by the first two principal components. The highest content of ${\alpha}$-tocopherol was $38.6{\mu}g$ per g in Tanner, while that of ${\gamma}$-tocopherol was $195.6{\mu}g$ in PI 91073. In case of ${\delta}$-tocopherol, IT 105622 showed the highest value as $29.8{\mu}g$. The contents of tocopherol were gradually increased from the late August to late September, which was 10 days before maturity, in Alchankong and PI 96322. The tocopherol content was higher in seeds from the plants sown early than those sown late. Total tocopherol contents of PI 96188, Geomjeongkong 2, and Suwon 183 grown in Gimje were higher than those grown in Iksan, but the difference was not observed in PI 96322. These results suggest that the contents of tocopherol in soybean were affected not only by the genotypes but also by environment.

Physiological and Proteomics Analysis to Potassium Starvation in Rice

  • Kim, Sang-Gon;Wang, Yiming;Lee, Chang-Hoon;Chi, Yong-Hun;Kim, Keun-Ki;Choi, In-Soo;Kim, Yong-Chul;Kang, Kyu-Young;Kim, Sun-Tae
    • Korean Journal of Environmental Agriculture
    • /
    • v.30 no.4
    • /
    • pp.395-401
    • /
    • 2011
  • BACKGROUND: Potassium (K) is one of the macronutrients which are essential for plant growth and development. Its deficiency in paddy soils is becoming one of the limiting factors for increasing rice yield in Asia. METHODS AND RESULTS: To investigate physiological symptoms under K-starvation (NP) compared with complete media (NPK) condition, we measured shoot/root length, weight, nutrients, and patterns of protein expression. The shoot growth was significantly reduced, but root growth was not affected by K-starvation. However, biomasses were decreased in both shoot and root. Uptake of K was reduced up to 85%, while total concentrations of P, Ca, Mg, Na were increased in root and shoot. To better understand the starved K mechanism of rice, comparative proteome analysis for proteins isolated from rice leaves was conducted using 2-DGE. Five spots of differentially expressed proteins were analyzed by MALDI-TOF MS. Analysis of these K-starvation response proteins suggested that they were involved in metabolism and defense. CONCLUSION(s): Physiological and 2-DGE based proteomics approach used in our study results in observation of morphology or nutrients change and identification of K-starvation responsive proteins in rice root. These results have important roles in maintaining nutrient homeostasis and would also be useful for further characterization of protein function in plant K nutrition.

Production of Exopolysaccharides and İndole Acetic Acid (IAA) by Rhizobacteria and Their Potential against Drought Stress in Upland Rice

  • Tetty Marta Linda;Jusinta Aliska;Nita Feronika;Ineiga Melisa;Erwina Juliantari
    • Journal of Microbiology and Biotechnology
    • /
    • v.34 no.6
    • /
    • pp.1239-1248
    • /
    • 2024
  • Peatlands are marginal agricultural lands due to highly acidic soil conditions and poor drainage systems. Drought stress is a big problem in peatlands as it can affect plants through poor root development, so technological innovations are needed to increase the productivity and sustainability of upland rice on peatlands. Rhizobacteria can overcome the effects of drought stress by altering root morphology, regulating stress-responsive genes, and producing exopolysaccharides and indole acetic acid (IAA). This study aimed to determine the ability of rhizobacteria in upland rice to produce exopolysaccharides and IAA, identify potential isolates using molecular markers, and prove the effect of rhizobacteria on viability and vigor index in upland rice. Rhizobacterial isolates were grown on yeast extract mannitol broth (YEMB) medium for exopolysaccharides production testing and Nutrient Broth (NB)+L-tryptophan medium for IAA production testing. The selected isolates identify using sequence 16S rRNA. The variables observed in testing the effect of rhizobacteria were germination ability, vigour index, and growth uniformity. EPS-1 isolate is the best production of exopolysaccharides (41.6 mg/ml) and IAA (60.83 ppm). The isolate EPS-1 was identified as Klebsiella variicola using 16S rRNA sequencing and phylogenetic analysis. The isolate EPS-1 can increase the viability and vigor of upland rice seeds. K. variicola is more adaptive and has several functional properties that can be developed as a potential bioagent or biofertilizer to improve soil nutrition, moisture and enhance plant growth. The use of rhizobacteria can reduce dependence on the use of synthetic materials with sustainable agriculture.