• 제목/요약/키워드: Rice Husk

검색결과 234건 처리시간 0.024초

바이오매스와 폐기물 고형연료의 연소특성 (Combustion Chracteristics of Biomass and Refuse Derived Fuel)

  • 구재회;오세천
    • 공업화학
    • /
    • 제23권5호
    • /
    • pp.456-461
    • /
    • 2012
  • 본 연구에서는 바이오매스의 에너지 활용성을 확인하기 위하여 실험실 연소로를 이용한 등온 및 비등온 연소특성 연구를 수행하였으며 바이오매스의 시료로는 목재펠렛, 볏짚 및 왕겨를 사용하였다. 바이오매스의 연소시 배출가스의 특성과 분진 및 잔류물을 분석하였으며 그 결과를 RDF의 연소실험 결과와 비교분석하였다. 등온 연소특성 실험으로부터 볏짚이 다른 시료에 비하여 연소속도가 빨라 급격히 산소량이 감소되어 불완전연소율이 증가함을 확인하였으며 목재펠렛의 경우 다른 시료에 비하여 가장 낮은 $NO_{X}$ 배출농도를 나타내었다. 또한 비등온 연소특성 실험으로부터 모든 시료가 $900^{\circ}C$의 연소온도에 도달하기 이전에 연소가 대부분 일어남을 확인할 수 있었으며 $NO_{X}$의 경우 CO가 배출되는 범위와 유사한 온도범위에서 배출되는 반면에 $SO_{2}$의 경우보다 고온에서 배출됨을 확인할 수 있었다.

TiO2/Carbon Composites Prepared from Rice Husk and the Removal of Bisphenol A in Photocatalytic Liquid System

  • Kim, Ji-Yeon;Kwak, Byeong-Sub;Kang, Mi-Sook
    • Bulletin of the Korean Chemical Society
    • /
    • 제31권2호
    • /
    • pp.344-350
    • /
    • 2010
  • The improved photocatalytic performance of a carbon/$TiO_2$ composite was studied for the Bisphenol A (BPA) decomposition. Titanium tetraisopropoxide (TTIP) and a rice husk from Korea were heterogeneously mixed as the titanium and carbon sources, respectively, for 3 h at room temperature, and then thermally treated at $600^{\circ}C$ for 1 h in $H_2$ gas. The transmission electron microscopy (TEM) images revealed that the bulk carbon partially covered the $TiO_2$ particles, and the amount that was covered increased with the addition of the rice husk. The acquired carbon/$TiO_2$ composite exhibited an anatase structure and a novel peak at $2{\theta}=32^{\circ}$, which was assigned to bulk carbon. The specific surface area was significantly enhanced to 123~164 $m^2/g$ in the carbon/$TiO_2$ composite, compared to $32.43m^2/g$ for the pure $TiO_2$. The X-ray photoelectron spectroscopy (XPS) results showed that the Ti-O bond was weaker in the carbon/$TiO_2$ composite than in the pure $TiO_2$, resulting in an easier electron transition from the Ti valence band to the conduction band. The carbon/$TiO_2$ composite absorbed over the whole UV-visible range, whereas the absorption band in the pure$TiO_2$ was only observed in the UV range. These results agreed well with an electrostatic force microscopy (EFM) study that showed that the electrons were rapidly transferred to the surface of the carbon/$TiO_2$ composite compared to the pure $TiO_2$. The photocatalytic performance of the BPA removal was optimized at a Ti:C ratio of 9.5:0.5, and this photocatalytic composite completely decomposed 10.0 ppm BPA after 210 min, whereas the pure $TiO_2$ achieved no more than 50% decomposition under any conditions.

코코넛 섬유 혼입률에 따른 RHA 및 OPC 콘크리트의 역학적 특성 (Mechanical Properties in Rice Husk Ash and OPC Concrete with Coconut Fiber Addition Ratios)

  • 이민희;권성준;박기태
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제19권2호
    • /
    • pp.117-124
    • /
    • 2015
  • 건설분야에서 이산화탄소를 저감하기 위해 최근들어 친환경 혼화재료가 많이 사용되고 있다. 또한 콘크리트의 취성파괴를 보완하기 위해 다양한 섬유재의 사용이 고려되고 있다. 본 연구에서는 Rice Ash Husk를 10% 및 20% 치환한 콘크리트를 제조하였으며, 천연섬유 (코코넛 섬유)를 0.125%, 0.250%, 0.375% 혼입하면서 역학적 특성을 평가하였다. 평가를 위해 압축강도, 쪼갬인장강도, 휨강도, 내충격성, 부착강도 등이 평가되었으며, 휨부재의 하중에 따른 균열 및 변위를 분석하였다. RHA를 첨가한 콘크리트는 압축강도를 효과적으로 개선하였으며, 섬유재를 0.125%를 첨가하였을 때, 인장강도, 연성증가 그리고 균열저항성 등이 뚜렷하게 개선되었다. RHA 및 첨연섬유는 자원의 재활용 뿐 아니라 콘크리트의 성능도 개선할 수 있으므로 효과적인 건설재료라고 판단된다.

An Artificial Neural Networks Model for Predicting Permeability Properties of Nano Silica-Rice Husk Ash Ternary Blended Concrete

  • Najigivi, Alireza;Khaloo, Alireza;zad, Azam Iraji;Rashid, Suraya Abdul
    • International Journal of Concrete Structures and Materials
    • /
    • 제7권3호
    • /
    • pp.225-238
    • /
    • 2013
  • In this study, a two-layer feed-forward neural network was constructed and applied to determine a mapping associating mix design and testing factors of cement-nano silica (NS)-rice husk ash ternary blended concrete samples with their performance in conductance to the water absorption properties. To generate data for the neural network model (NNM), a total of 174 field cores from 58 different mixes at three ages were tested in the laboratory for each of percentage, velocity and coefficient of water absorption and mix volumetric properties. The significant factors (six items) that affect the permeability properties of ternary blended concrete were identified by experimental studies which were: (1) percentage of cement; (2) content of rice husk ash; (3) percentage of 15 nm of $SiO_2$ particles; (4) content of NS particles with average size of 80 nm; (5) effect of curing medium and (6) curing time. The mentioned significant factors were then used to define the domain of a neural network which was trained based on the Levenberg-Marquardt back propagation algorithm using Matlab software. Excellent agreement was observed between simulation and laboratory data. It is believed that the novel developed NNM with three outputs will be a useful tool in the study of the permeability properties of ternary blended concrete and its maintenance.

톱밥과 왕겨로 제조된 혼합세라믹의 물성 - 수지함침율 및 소성온도의 영향 - (Properties of Ceramics from a Board Mixed with Sawdust and Rice Husk - Effect of Percentage of Resin Impregnation and Carbonization Temperature -)

  • 오승원;박금희;정인수
    • Journal of the Korean Wood Science and Technology
    • /
    • 제33권3호통권131호
    • /
    • pp.30-37
    • /
    • 2005
  • 톱밥과 왕겨를 혼합하여 보드를 제조한 후 페놀수지에 함침율 40~70%로 함침한 후 소성온도 $600{\sim}1200^{\circ}C$에서 소성하여 혼합세라믹을 제조한 다음 수지함침율과 소성온도에 따른 혼합세라믹의 밀도변화, 중량 및 치수감소율과 휨강도를 조사하였다. 수지함침율이 증가함에 따라 소성 후 두께 및 중량 감소율은 감소하였고 밀도와 휨강도는 증가하였다. 소성온도가 증가함에 따라 소성 후 길이, 두께 및 중량 감소율은 증가하였고 밀도는 소성온도 $800^{\circ}C$까지는 증가하다가 $1200^{\circ}C$ 에서는 약간 감소하였다.

Utilisation of glass powder in high strength copper slag concrete

  • Zaidi, Kaleem A.;Ram, Shobha;Gautam, Mukesh K.
    • Advances in concrete construction
    • /
    • 제5권1호
    • /
    • pp.65-74
    • /
    • 2017
  • This study was focused on the use of partial replacement of cement with glass powder in high strength concrete and also copper slag as a partial replacement of coarse sand in concrete. The high strength concrete was prepared with different mineral admixtures like silica fume, fly ash and rice ash husk in different proportions. An experimental investigation has been carried to study about the effect of glass powder on high strength copper slag concrete. The range of glass powder was 10%, 15% and 20% as a replacement of cement. The range of copper slag was 0%, 20%, 40% and 60% as a replacement of natural sand. In addition to the different percentage of fly ash, silica fume, and rice husk ash 5% and 10% was also studied in copper slag concrete. Thus, a total of 51 cubes were casted and compressive strength test was performed on them. The result of the study shows that the value of average compressive strength of concrete after addition of 10%, 15% and 20% of glass powder are 70.47, 72.01 and 73.31 respectively. The value of average compressive strength after addition of 20%, 40% and 60% copper slag as a replacement of sand are 72.18, 74.38 and 73.08 respectively. The value of average compressive strength after addition of 5% and 10% fly ash as a replacement of cement are 71.56 and 73.22. The value of average compressive strength after addition of 5% and 10% silica fume as a replacement of cement are 72.33 and 73.53. The value of average compressive strength after addition of 5% and 10% rice husk ash as a replacement of cement are 72.86 and 69.49. At the level of 20% replacement of cement by glass powder meets maximum strength as compared to that of controlled concrete and copper slag high strength concrete.

An efficient robust cost optimization procedure for rice husk ash concrete mix

  • Moulick, Kalyan K.;Bhattacharjya, Soumya;Ghosh, Saibal K.;Shiuly, Amit
    • Computers and Concrete
    • /
    • 제23권6호
    • /
    • pp.433-444
    • /
    • 2019
  • As rice husk ash (RHA) is not produced in controlled manufacturing process like cement, its properties vary significantly even within the same lot. In fact, properties of Rice Husk Ash Based Concrete (RHABC) are largely dictated by uncertainty leading to huge deviations from their expected values. This paper proposes a Robust Cost Optimization (RCO) procedure for RHABC, which minimizes such unwanted deviation due to uncertainty and provides guarantee of achieving desired strength and workability with least possible cost. The RCO simultaneously minimizes cost of RHABC production and its deviation considering feasibility of attaining desired strength and workability in presence of uncertainty. RHA related properties have been modeled as uncertain-but-bounded type as associated probability density function is not available. Metamodeling technique is adopted in this work for generating explicit expressions of constraint functions required for formulation of RCO. In doing so, the Moving Least Squares Method is explored in place of conventional Least Square Method (LSM) to ensure accuracy of the RCO. The efficiency by the proposed MLSM based RCO is validated by experimental studies. The error by the LSM and accuracy by the MLSM predictions are clearly envisaged from the test results. The experimental results show good agreement with the proposed MLSM based RCO predicted mix properties. The present RCO procedure yields RHABC mixes which is almost insensitive to uncertainty (i.e., robust solution) with nominal deviation from experimental mean values. At the same time, desired reliability of satisfying the constraints is achieved with marginal increment in cost.

농림부산물을 이용한 펠릿의 열적 특성 (Thermal Characteristics of Pellets made of Agricultural and Forest by-products)

  • 강연구;강금춘;김종구;김영화;장재경;유영선
    • 한국농공학회논문집
    • /
    • 제53권2호
    • /
    • pp.61-65
    • /
    • 2011
  • Biomass is considered to be a major potential fuel and renewable resource for the future. In fact, there is high potential to produce the large amount of energy from biomass around the world. In this study, to obtain basic data for practical application of agricultural and forest by-products as fuel of heating system in agriculture, agricultural and forest biomass resources were surveyed, the pelletizer with capacity of $50\;kg{\cdot}h^{-1}$ was designed and manufactured and pellets were made by the pelletizer. High heating value, ash content, etc. of pellets made of agricultural and forest by-products were estimated. Straw of rice was the largest agricultural biomass in 2009 and the total amount of rice straw converted into energy of $299{\times}10^3$ TOE. And in 2009, amount of forest by-product converted into energy of $9,579{\times}10^3$ TOE. High heating values of pellets made of stem and seed of rape, stem of oat, rice straw and rice husk were 16,034, 16,026, 16,089, 15,650, $15,044\;kJ{\cdot}kg^{-1}$ respectively. High heating values of pellets made of agricultural by-products were average 83.6% compared to that of wood pellet. Average bulk density of pellets made of stem and seed of rape, stem of oat, rice straw and rice husk was $1,400\;kg{\cdot}m^{-3}$ ($1.4\;g{\cdot}cm^{-3}$). Ash contents of the pellets were 6.6, 7, 6.2, 5.5, 33% respectively. Rice husk pellet produced the largest ash content compared to other kinds of pellets.

Surface modified rice husk ceramic particles as a functional additive: Improving the tribological behaviour of aluminium matrix composites

  • Cheng, Lehua;Yu, Dongrui;Hu, Enzhu;Tang, Yuchao;Hu, Kunhong;Dearn, Karl David;Hu, Xianguo;Wang, Min
    • Carbon letters
    • /
    • 제26권
    • /
    • pp.51-60
    • /
    • 2018
  • An electroless deposition method was used to modify the surface properties of rice husk ceramic particles (RHC) by depositing nano-nickel on the surface of the RHC (Ni-RHC). The dry tribological performances of aluminum matrix composite adobes containing different contents of RHC and Ni-RHC particles have been investigated using a micro-tribometer. Results showed that the Ni-RHC particles substantially improved both the friction and wear properties of the Ni-RHC/aluminum matrix adobes. The optimal concentration was determined to be 15 wt% for both the RHC and Ni-RHC particles. The improvements in the tribological properties of aluminum adobes including the Ni-RHC were ascribed to friction-induced peeling off of Ni coating and formation of protection layer on the wear zone, both of which led to low friction and wear volume.

Stabilized soil incorporating combinations of rice husk ash, pond ash and cement

  • Gupta, Deepak;Kumar, Arvind
    • Geomechanics and Engineering
    • /
    • 제12권1호
    • /
    • pp.85-109
    • /
    • 2017
  • The paper presents the laboratory study of clayey soil stabilized with Pond ash (PA), Rice husk ash (RHA), cement and their combination used as stabilizers to develop and evaluate the performance of clayey soil. The effect of stabilizer types and dosage on fresh and mechanical properties is evaluated through compaction tests, unconfined compressive strength tests (UCS) and Split tensile strength tests (STS) performed on raw and stabilized soil. In addition SEM (scanning electron microscopy) and XRD (X-ray diffraction) tests were carried out on certain samples in order to study the surface morphological characteristics and hydraulic compounds, which were formed. Specimens were cured for 7, 14 and 28 days after which they were tested for unconfined compression tests and split tensile strength tests. The moisture and density curves indicate that addition of RHA and pond ash results in an increase in optimum moisture content (OMC) and decrease in maximum dry density (MDD). The replacement of clay with 40% PA, 10% RHA and 4% cement increased the strength (UCS and STS) of overall mix in comparison to the mixes where PA and RHA were used individually with cement. The improvement of 336% and 303% in UCS and STS respectively has been achieved with reference to clay only. Developed stabilized soil mixtures have shown satisfactory strength and can be used for low-cost construction to build road infrastructures.