• Title/Summary/Keyword: Ribosome

Search Result 214, Processing Time 0.033 seconds

Proper NMR methods for studying RNA thermometers

  • Kim, Won-Je;Kim, Nak-Kyoon
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.19 no.3
    • /
    • pp.143-148
    • /
    • 2015
  • In some pathogenic bacteria, there are RNA thermometers, which regulate the production of virulence associated factors or heat shock proteins depending on temperature changes. Like a riboswitches, RNA thermometers are located in the 5'-untranslated region and involved translational gene regulatory mechanism. RNA thermometers block the ribosome-binding site and start codon area under the $37^{\circ}C$ within their secondary structure. After bacterial infection, increased the temperature in the host causes conformations changes of RNA, and the ribosome-binding site is exposed for translational initiation. Because structural differences between open and closed forms of RNA thermometers are mainly mediated by base pairing changes, NMR spectroscopy is a very useful method to study these thermodynamically changing RNA structure. In this review, we briefly provide a fundamental function of RNA thermometers, and also suggest a proper NMR experiments for studying RNA thermometers.

SIMULTANEOUS EXPRESSION OF HUMAN CYTOCHROME P450 3A5 AND NADPH-CYTOCHROME P450 REDUCTASE IN CHINESE HAMSTER OVARY CELL USING INTERNAL RIBOSOME ENTRY SITE

  • Kang, Hyuck-Joon;Kang, Jin-Sun;Dong, Mi-Sook;Park, Chang-Hwan
    • Proceedings of the Korean Society of Toxicology Conference
    • /
    • 2001.10a
    • /
    • pp.189-189
    • /
    • 2001
  • For a continuous expression of human cytochrome p450 3A5 (CYP3A5) and NADPH-cytochrome P450 reductase (CYPR) proteins, bicistronic construct (CYP3A5BC-LNCX2) was made using internal ribosome entry site (IRES). As for mammalian cell expression, we used pLNCX2 retroviral vector; and using calcium phosphate, plasmid transfer was achieved in 293GPG cell and transduced in Chinese hamster ovary (CHO) cell.(omitted)

  • PDF

The Role of mRNA Quality Control in the Aging of Caenorhabditis elegans

  • Hyunwoo C. Kwon;Yunkyu Bae;Seung-Jae V. Lee
    • Molecules and Cells
    • /
    • v.46 no.11
    • /
    • pp.664-671
    • /
    • 2023
  • The proper maintenance of mRNA quality that is regulated by diverse surveillance pathways is essential for cellular homeostasis and is highly conserved among eukaryotes. Here, we review findings regarding the role of mRNA quality control in the aging and longevity of Caenorhabditis elegans, an outstanding model for aging research. We discuss the recently discovered functions of the proper regulation of nonsense-mediated mRNA decay, ribosome-associated quality control, and mRNA splicing in the aging of C. elegans. We describe how mRNA quality control contributes to longevity conferred by various regimens, including inhibition of insulin/insulin-like growth factor 1 (IGF-1) signaling, dietary restriction, and reduced mechanistic target of rapamycin signaling. This review provides valuable information regarding the relationship between the mRNA quality control and aging in C. elegans, which may lead to insights into healthy longevity in complex organisms, including humans.

Spacing Effect of the Intervening Sequences between Ribosome Binding Site and the Initiation Codon on Expression of Bacillus thuringiensis $\delta$-Endotoxin

  • Roh, Jong-Yul;Li, Ming-Shun;Chang, Jin-Hee;Park, Jae-Young;Shim, Hee-Jin;Woo, Soo-Dong;Boo, Kyung-Saeng;Je, Yeon-Ho
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • v.6 no.1
    • /
    • pp.81-85
    • /
    • 2003
  • To verify importance of the intervening sequence between the ribosome binding site (RBS) and the initiation codon for expression of Bacillus thuringiensis $\delta$-endotoxin, the pProMu, containing SphI and NcoIsites between RBS and the initiation codon of the cry1Ac gene, and the deletion derivatives of pProMu were constructed and transformed into the B. thuringiensis subsp. kurstaki $Cry^{-B}$ strain. The pProMu-ΔSphIhad identical six bases of intervening sequence to pProAc though the arrangement of sequence was different. Other mutants containing pProMu had 1 or 10 or 14 bases between RBS and the initiation codon. Among deletion mutants, only ProMu-ΔSphI/CB only produced 130 kDa typical bipyramidal crystals like those seen for ProAc/CB. However, ProMu/CB, $ProMu-{\Delta}NcoI$, and ProMu-ΔSphI+NcoIdid not produce Cry1Ac crystals. In conclusion, the results suggest that 6-base intervening sequence was important for expression of cry1-type class gene. Furthermore, spacing effect of the intervening sequences may play an important role in expression of individual crystal proteins in B. thuringiensis without doubt.

Fine Structural Study on Compensation Effect of Red Ginseng against Methylmercury Injury to Brain and Gill of Fightingfish (메틸수은으로 손상된 버들붕어 뇌와 아가미에 대한 홍삼의 보상효능에 관한 미세구조적 연구)

  • Chung, Hee-Won;Lee, Choon-Koo
    • Applied Microscopy
    • /
    • v.23 no.1
    • /
    • pp.15-24
    • /
    • 1993
  • The toxic effects of methylmercury on the ultrastructures of the brain and gill tissues of fightingfish and compensative effects of red ginseng were investigated by means of electron microscopy. The brain neuron of methylmercury exposure group showed dilatation of dendrite and axon, numerical decrease of ribosomes, partial loss of nucleoplasm and cytoplasm and considerable swelling of mitochondria as compared with the normal neuron. And necrotic cell with ruptured nucleus and vacuolated mitochondria was noticeable. While, slight swelling of mitochondria, some dilation of dendrite and axon and numerical increase of ribosome occurred in the neuron of methylmercury-red ginseng treatment group as compared with the methylmercury exposure group. In the gill lamella of methylmercury exposure group, collapse of pillar cells and arms, dilated epithelial cell and thickened membrane were observed. While, in the gill lamella of methylmercury-red ginseng treatment group, arms were slightly disintegrated and basement membrane was some thickend as compared with the methylmercury exposure group. From the above results, it is concluded that red ginseng has detoxication effect on methylmercury toxicity and so takes compensative effect on injured tissues caused by methylmercury intoxication.

  • PDF

ermK Leader Peptide : Amino Acid Sequence Critical for Induction by Erythromycin

  • Kwon, Ae-Ran;Min, Yu-Hong;Yoon, Eun-Jeong;Kim, Jung-A;Shim, Mi-Ja;Choi, Eung-Chil
    • Archives of Pharmacal Research
    • /
    • v.29 no.12
    • /
    • pp.1154-1157
    • /
    • 2006
  • The ermK gene from Bacillus lichenformis encodes an inducible rRNA methylase that confers resistance to the macrolide-lincosamide-streptogramin B antibiotics. The ermK mRNA leader sequence has a total length of 357 nucleotides and encodes a 14-amino acid leader peptide together with its ribosome binding site. The secondary structure of ermK leader mRNA and a leader peptide sequence have been reported as the elements that control expression. In this study, the contribution of specific leader peptide amino acid residues to induction of ermK was studied using the PCR-based megaprimer mutation method. ermK methylases with altered leader peptide codons were translationally fused to E. coli ${\beta}-galactosidase$ reporter gene. The deletion of the codons for Thr-2 through Ser-4 reduced inducibility by erythromycin, whereas that for Thr-2 and His-3 was not. The replacement of the individual codons for Ser-4, Met-5 and Arg-6 with termination codon led to loss of inducibility, but stop mutation of codon Phe-9 restored inducibility by erythromycin. Collectively, these findings suggest that the codons for residue 4, 5 and 6 comprise the critical region for induction. The stop mutation at Leu-7 expressed constitutively ermK gene. Thus, ribosome stalling at codon 7 appears to be important for ermK induction.

Formulation and Cytotoxicity of Ribosome-Inactivating Protein Mirabilis Jalapa L. Nanoparticles Using Alginate-Low Viscosity Chitosan Conjugated with Anti-Epcam Antibodies in the T47D Breast Cancer Cell Line

  • Wicaksono, Psycha Anindya;Sismindari, Sismindari;Martien, Ronny;Ismail, Hilda
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.17 no.4
    • /
    • pp.2277-2284
    • /
    • 2016
  • Ribosome-inactivating protein (RIP) from Mirabilis jalapa L. leaves has cytotoxic effects on breast cancer cell lines but is less toxic towards normal cells. However, it can easily be degraded after administration so it needs to be formulated into nanoparticles to increase its resistance to enzymatic degradation. The objectives of this study were to develop a protein extract of M. jalapa L. leaves (RIP-MJ) incorporated into nanoparticles conjugated with Anti-EpCAM antibodies, and to determine its cytotoxicity and selectivity in the T47D breast cancer cell line. RIP-MJ was extracted from red-flowered M. jalapa L. leaves. Nanoparticles were formulated based on polyelectrolyte complexation using low viscosity chitosan and alginate, then chemically conjugated with anti-EpCAM antibody using EDAC based on carbodiimide reaction. RIP-MJ nanoparticles were characterised for the particle size, polydispersity index, zeta potential, particle morphology, and entrapment efficiency. The cytotoxicity of RIP-MJ nanoparticles against T47D and Vero cells was then determined with MTT assay. The optimal formula of RIP-MJ nanoparticles was obtained at the concentration of RIP-MJ, low viscosity chitosan and alginate respectively 0.05%, 1%, and 0.4% (m/v). RIP-MJ nanoparticles are hexagonal with high entrapment efficiency of 98.6%, average size of 130.7 nm, polydispersity index of 0.380 and zeta potential +26.33 mV. The $IC_{50}$ values of both anti-EpCAM-conjugated and non-conjugated RIP-MJ nanoparticles for T47D cells (13.3 and $14.9{\mu}g/mL$) were lower than for Vero cells (27.8 and $33.6{\mu}g/mL$). The $IC_{50}$ values of conjugated and non-conjugated RIP-MJ for both cells were much lower than $IC_{50}$ values of non-formulated RIP-MJ (>$500{\mu}g/mL$).

Antiviral Activity of a Type 1 Ribosome-inactivating Protein from Chenopodium album L.

  • Lee, Si-Myung;Cho, Kang-Jin;Kim, Yeong-Tae;Park, Hee-young;Kim, Su-il;Hwang, Young-Soo;Kim, Donghern
    • Journal of Applied Biological Chemistry
    • /
    • v.42 no.4
    • /
    • pp.161-165
    • /
    • 1999
  • The antiviral activity of CAP30 from Chenopodium album, a type1 ribosome-inactivating protein (RIP), was examined against 5 different plant viral pathogens, and its activity against Tobacco mosaic virus was compared to those of well known antiviral proteins such as Pokeweed Antiviral protein from leaves and seeds. When the inoculating concentration of Tobacco mosaic virus was varied from 0.4 to $400{\mu}g/ml$, it was observed that CAP30 at the concentration of $1{\mu}g/ml$ suppressed the viral infection of C. amaranthicolor and C. quinoa almost completely up to $40{\mu}g/ml$ Tobacco mosaic virus. Results from the assays for the inhibitions of in vitro translation of rabbit reticulocyte lysate and the suppression of Tobacco mosaic virus infection ($10{\mu}g/ml$) to C. quinoa indicated that CAP30 is a strong inhibitor of protein synthesis and virus infection. The infection of several viruses other than Tobacco mosaic virus to host plants were also inhibited by $5{\mu}g/ml$ CAP30, suggesting that a gene encoding CAP30 can be used to develop transgenic virus-resistant plants.

  • PDF

Development of an RNA Expression Platform Controlled by Viral Internal Ribosome Entry Sites

  • Ko, Hae Li;Park, Hyo-Jung;Kim, Jihye;Kim, Ha;Youn, Hyewon;Nam, Jae-Hwan
    • Journal of Microbiology and Biotechnology
    • /
    • v.29 no.1
    • /
    • pp.127-140
    • /
    • 2019
  • Since 1990, many nucleic acid expression platforms consisting of DNA or RNA have been developed. However, although RNA expression platforms have been relatively neglected, several such platforms capped at the 5' end of RNA by an anti-reverse cap analog have now been developed. At the same time, the capping reaction is a bottleneck in the production of such platforms, with high cost and low efficiency. Here, we investigated several viral and eukaryotic internal ribosome entry sites (IRESs) to develop an optimal RNA expression platform, because IRES-dependent translation does not require a capping step. RNA expression platforms constructed with IRESs from the 5' untranslated regions of the encephalomyocarditis virus (EMCV) and the intergenic region of the cricket paralysis virus (CrPV) showed sufficient expression efficiency compared with cap-dependent RNA expression platforms. However, eukaryotic IRESs exhibited a lower viral IRES expression efficiency. Interestingly, the addition of a poly(A) sequence to the 5' end of the coxsackievirus B3 (CVB3) IRES (pMA-CVB3) increased the expression level compared with the CVB3 IRES without poly(A) (pCVB3). Therefore, we developed two multiexpression platforms (termed pMA-CVB3-EMCV and pCrPV-EMCV) by combining the IRESs of CVB3, CrPV, and EMCV in a single-RNA backbone. The pMA-CVB3-EMCV-derived RNA platform showed the highest expression level. Moreover, it clearly exhibited expression in mouse muscles in vivo. These RNA expression platforms prepared using viral IRESs will be useful in developing potential RNA-based prophylactic or therapeutic vaccines, because they have better expression efficiency and do not need a capping step.

Real-Time Temporal Dynamics of Bicistronic Expression Mediated by Internal Ribosome Entry Site and 2A Cleaving Sequence

  • Lee, Soomin;Kim, Jeong-Ah;Kim, Hee-Dae;Chung, Sooyoung;Kim, Kyungjin;Choe, Han Kyoung
    • Molecules and Cells
    • /
    • v.42 no.5
    • /
    • pp.418-425
    • /
    • 2019
  • Multicistronic elements, such as the internal ribosome entry site (IRES) and 2A-like cleavage sequence, serve crucial roles in the eukaryotic ectopic expression of exogenous genes. For utilization of multicistronic elements, the cleavage efficiency and order of elements in multicistronic vectors have been investigated; however, the dynamics of multicistronic element-mediated expression remains unclear. Here, we investigated the dynamics of encephalomyocarditis virus (EMCV) IRES- and porcine teschovirus-1 2A (p2A)-mediated expression. By utilizing real-time fluorescent imaging at a minute-level resolution, we monitored the expression of fluorescent reporters bridged by either EMCV IRES or p2A in two independent cultured cell lines, HEK293 and Neuro2a. We observed significant correlations for the two fluorescent reporters in both multicistronic elements, with a higher correlation coefficient for p2A in HEK293 but similar coefficients for IRES-mediated expression and p2A-mediated expression in Neuro2a. We further analyzed the causal relationship of multicistronic elements by convergent cross mapping (CCM). CCM revealed that in all four conditions examined, the expression of the preceding gene causally affected the dynamics of the subsequent gene. As with the cross correlation, the predictive skill of p2A was higher than that of IRES in HEK293, while the predictive skills of the two multicistronic elements were indistinguishable in Neuro2a. To summarize, we report a significant temporal correlation in both EMCV IRES- and p2A-mediated expression based on the simple bicistronic vector and real-time fluorescent monitoring. The current system also provides a valuable platform to examine the dynamic aspects of expression mediated by diverse multicistronic elements under various physiological conditions.