• Title/Summary/Keyword: Ribosomal protein genes

Search Result 128, Processing Time 0.023 seconds

Comparative Analysis of Mitochondrial Genomes of the Genus Sebastes (Scorpaeniformes, Sebastidae) Inhabiting the Middle East Sea, Korea (한국 동해 중부해역에 서식하는 볼락속(Sebastes) 어류의 미토콘드리아 유전체 비교분석)

  • Jang, Yo-Soon;Hwang, Sun Wan;Lee, Eun Kyung;Kim, Sung
    • Korean Journal of Ichthyology
    • /
    • v.33 no.4
    • /
    • pp.226-239
    • /
    • 2021
  • Sebastes minor, Sebastes trivittatus, Sebastes owstoni, and Sebastes steindachneri are indigenous fish species inhabiting the central part of the East Sea, Korea. In order to understand the molecular evolution of these four rockfishes, we sequenced the complete mitochondrial genomes (mitogenomes) of S. minor and S. trivittatus. To further analyze the phylogeny of Sebastes species, the mitogenomes of 16 rockfishes were comparatively investigated. The complete mitochondrial DNA (mtDNA) nucleotide sequences of S. minor and S. trivittatus were 16,408 bp and 16,409 bp in length, respectively. A total of 37 genes were found in mtDNA of S. minor and S. trivittatus, including 13 protein-coding genes, 2 ribosomal RNA genes, and 22 transfer RNA genes, which exhibited similar characters with other Sebastes species in the East Sea, Korea. In addition, we detected a conserved motif "ATGTA" in the control region of the four Sebastes species, but no tandem repeat units. Comparative analyses of the congeneric mitochondrial genomes were performed, which showed that control regions were more variable than the concatenated protein-coding genes. As a result of analysing phylogenetic relationships of four Sebastes species by using concatenated nucleotide sequences of 13 protein-coding genes, S. minor, S. trivittatus, S. owstoni and S. steindachneri were clustered into three clades. The phylogenetic tree exhibited that S. minor and S. steindachneri shared a closer relationship, whereas S. trivittatus and S. vulpes formed another distinct clade. Our results contribute to a better understanding of evolutionary patterns of Sebastes species inhabiting the middle East Sea, Korea.

Mitochondrial Genome Sequence of Echinostoma revolutum from Red-Crowned Crane (Grus japonensis)

  • Ran, Rongkun;Zhao, Qi;Abuzeid, Asmaa M.I.;Huang, Yue;Liu, Yunqiu;Sun, Yongxiang;He, Long;Li, Xiu;Liu, Jumei;Li, Guoqing
    • Parasites, Hosts and Diseases
    • /
    • v.58 no.1
    • /
    • pp.73-79
    • /
    • 2020
  • Echinostoma revolutum is a zoonotic food-borne intestinal trematode that can cause intestinal bleeding, enteritis, and diarrhea in human and birds. To identify a suspected E. revolutum trematode from a red-crowned crane (Grus japonensis) and to reveal the genetic characteristics of its mitochondrial (mt) genome, the internal transcribed spacer (ITS) and complete mt genome sequence of this trematode were amplified. The results identified the trematode as E. revolutum. Its entire mt genome sequence was 15,714 bp in length, including 12 protein-coding genes, 22 transfer RNA genes, 2 ribosomal RNA genes and one non-coding region (NCR), with 61.73% A+T base content and a significant AT preference. The length of the 22 tRNA genes ranged from 59 bp to 70 bp, and their secondary structure showed the typical cloverleaf and D-loop structure. The length of the large subunit of rRNA (rrnL) and the small subunit of rRNA (rrnS) gene was 1,011 bp and 742 bp, respectively. Phylogenetic trees showed that E. revolutum and E. miyagawai clustered together, belonging to Echinostomatidae with Hypoderaeum conoideum. This study may enrich the mitochondrial gene database of Echinostoma trematodes and provide valuable data for studying the molecular identification and phylogeny of some digenean trematodes.

Dynamic changes of yak (Bos grunniens) gut microbiota during growth revealed by polymerase chain reaction-denaturing gradient gel electrophoresis and metagenomics

  • Nie, Yuanyang;Zhou, Zhiwei;Guan, Jiuqiang;Xia, Baixue;Luo, Xiaolin;Yang, Yang;Fu, Yu;Sun, Qun
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.30 no.7
    • /
    • pp.957-966
    • /
    • 2017
  • Objective: To understand the dynamic structure, function, and influence on nutrient metabolism in hosts, it was crucial to assess the genetic potential of gut microbial community in yaks of different ages. Methods: The denaturing gradient gel electrophoresis (DGGE) profiles and Illumina-based metagenomic sequencing on colon contents of 15 semi-domestic yaks were investigated. Unweighted pairwise grouping method with mathematical averages (UPGMA) clustering and principal component analysis (PCA) were used to analyze the DGGE fingerprint. The Illumina sequences were assembled, predicted to genes and functionally annotated, and then classified by querying protein sequences of the genes against the Kyoto encyclopedia of genes and genomes (KEGG) database. Results: Metagenomic sequencing showed that more than 85% of ribosomal RNA (rRNA) gene sequences belonged to the phylum Firmicutes and Bacteroidetes, indicating that the family Ruminococcaceae (46.5%), Rikenellaceae (11.3%), Lachnospiraceae (10.0%), and Bacteroidaceae (6.3%) were dominant gut microbes. Over 50% of non-rRNA gene sequences represented the metabolic pathways of amino acids (14.4%), proteins (12.3%), sugars (11.9%), nucleotides (6.8%), lipids (1.7%), xenobiotics (1.4%), coenzymes, and vitamins (3.6%). Gene functional classification showed that most of enzyme-coding genes were related to cellulose digestion and amino acids metabolic pathways. Conclusion: Yaks' age had a substantial effect on gut microbial composition. Comparative metagenomics of gut microbiota in 0.5-, 1.5-, and 2.5-year-old yaks revealed that the abundance of the class Clostridia, Bacteroidia, and Lentisphaeria, as well as the phylum Firmicutes, Bacteroidetes, Lentisphaerae, Tenericutes, and Cyanobacteria, varied more greatly during yaks' growth, especially in young animals (0.5 and 1.5 years old). Gut microbes, including Bacteroides, Clostridium, and Lentisphaeria, make a contribution to the energy metabolism and synthesis of amino acid, which are essential to the normal growth of yaks.

Complete Mitochondrial Genome Sequences of Korean Phytophthora infestans Isolates and Comparative Analysis of Mitochondrial Haplotypes

  • Seo, Jin-Hee;Choi, Jang-Gyu;Park, Hyun-Jin;Cho, Ji-Hong;Park, Young-Eun;Im, Ju-Sung;Hong, Su-Young;Cho, Kwang-Soo
    • The Plant Pathology Journal
    • /
    • v.38 no.5
    • /
    • pp.541-549
    • /
    • 2022
  • Potato late blight caused by Phytophthora infestans is a destructive disease in Korea. To elucidate the genomic variation of the mitochondrial (mt) genome, we assembled its complete mt genome and compared its sequence among different haplotypes. The mt genome sequences of four Korean P. infestans isolates were revealed by Illumina HiSeq. The size of the circular mt genome of the four major genotypes, KR_1_A1, KR_2_A2, SIB-1, and US-11, was 39,872, 39,836, 39,872, and 39,840 bp, respectively. All genotypes contained the same 61 genes in the same order, comprising two RNA-encoding genes, 16 ribosomal genes, 25 transfer RNA, 17 genes encoding electron transport and ATP synthesis, 11 open reading frames of unknown function, and one protein import-related gene, tatC. The coding region comprised 91% of the genome, and GC content was 22.3%. The haplotypes were further analyzed based on sequence polymorphism at two hypervariable regions (HVRi), carrying a 2 kb insertion/deletion sequence, and HVRii, carrying 36 bp variable number tandem repeats (VNTRs). All four genotypes carried the 2 kb insertion/deletion sequence in HVRi, whereas HVRii had two VNTRs in KR_1_A1 and SIB-1 but three VNTRs in US-11 and KR_2_A2. Minimal spanning network and phylogenetic analysis based on 5,814 bp of mtDNA sequences from five loci, KR_1_A1 and SIB-1 were classified as IIa-6 haplotype, and isolates KR_1_A2 and US-11 as haplotypes IIa-5 and IIb-2, respectively. mtDNA sequences of KR_1_A1 and SIB-1 shared 100% sequence identity, and both were 99.9% similar to those of KR_2_A2 and US-11.

Survey of Genes Responsive to Long-Term Heat Stress Using a cDNA Microarray Analysis in Mud Loach (Misgurnus mizolepis) Liver (장기 고온 스트레스에 대한 미꾸라지(Misgurnus mizolepis) 간 조직 내 유전자 발현 반응의 cDNA microarray 분석)

  • Cho, Young Sun;Lee, Sang Yoon;Noh, Choong Hwan;Nam, Yoon Kwon;Kim, Dong Soo
    • Korean Journal of Ichthyology
    • /
    • v.18 no.2
    • /
    • pp.65-77
    • /
    • 2006
  • Gene transcripts potentially responsive to the heat stress were surveyed by cDNA microarray analysis in mud loach (Misgurnus mizolepis). Transcriptional profiles of hepatic tissue in the fish exposed to either $23^{\circ}C$ or $32^{\circ}C$ for 4 weeks were compared each other by 3 replicated hybridization assays using 1,124 unigene clones selected from mud loach liver expressed sequence tags (ESTs). A total of 93 clones showed the substantially increased mRNA levels (>2-fold) in $32^{\circ}C$-exposed group when compared in $23^{\circ}C$control group. It includes various enzymes and proteins involved in energy pathway, protease/protein metabolisms, immune/antioxidant functions, cytoskeleton/cell structure, transport and/or signal transduction. Maximum level of increase was up to 15-fold relative to $23^{\circ}C$ treatment. Heat exposure also resulted in the significant decrease (less than 50% relative to $23^{\circ}C$-exposed fish) of the transcriptional activities in 85 genes. Besides the above categories, yolk protein (vitellogenin) and ribosomal proteins were notably down regulated in the fish exposed to heat stress. A number of novel gene transcripts were also detected in both up-regulated and down-regulated groups.

A Study on the Development of an Immune Related Genes from Midgut of Silkworm (누에 중장유래 생체방어 관련 유전자 개발 연구)

  • Choi, Kwang-Ho;Goo, Tae-Won;Kim, Seong-Ryul;Park, Seung-Won;Kim, Sung-Wan;Kang, Seok-Woo
    • Journal of Sericultural and Entomological Science
    • /
    • v.50 no.2
    • /
    • pp.140-144
    • /
    • 2012
  • This study was aimed for identification of a useful genetic resources from the entomopathogenic bacteria infected-midgut of the silkworm, Bombyx mori L. We analyzed the appropriately midgut-immunizing condition of $4^{th}$ instar larvae by a feeding infection using several entomopathogenic bacteria. Xenorhabdus nematophila was selected as a suitable bacteria for midgut immunization of Jam 123, B. mori. We constructed a subtraction cDNA library from the mRNA of the immunized midgut, respectively. A total of 1,000 clones were randomly selected from the subtracted cDNA library, and then performed a differential display hybridization analysis with forward and reverse probes. In conclusion, nine clones were identified as differential expressed genes, which presumed that these genes were involved in gut immunity of silkworm. The total number of clones analyzed in this work is not enough to have a brief overview of a understanding on the midgut immunity factors of silkworm. Therefore, further defined studies on these molecules biological roles will give us well-fined information about the innate immune mechanism of silkworm.

Complete genome sequence of Marinobacter salarius HL2708#2 isolated from a lava sea water environment on Jeju Island (제주용암 해수 환경에서 분리한 Marinobacter salarius HL2708#2의 유전체 해독)

  • Oh, Hyun-Myung;Kim, Dae-Hyun;Han, Seong-Jeong;Song, Jong-Ho;Kim, Kukhyun;Jang, Dongil
    • Korean Journal of Microbiology
    • /
    • v.55 no.1
    • /
    • pp.69-73
    • /
    • 2019
  • During screening of microbes for compounds having cosmetic benefits, we isolated Marinobacter salarius HL2708#2 from lava seawater on Jeju Island, Republic of Korea. The complete genome sequence was determined. Strain HL27080#2 features a circular chromosome of 4,304,603 bp with 57.21% G+C content and a 244,163 bp plasmid with 53.14% G+C. There were 4,180 protein coding sequences identified, along with 49 transfer RNA and 18 ribosomal RNA noncoding genes. The genome harbored genes for the utilization of alcohol, maltose/starch, and monosaccharide as sole carbon sources. Genes responsible for halophilic characteristics and heavy metal resistance could be annotated, as well as aromatic and alkane hydrocarbons. Contrary to the prior report that M. salarius is negative for nitrate and nitrite reduction, nitrate/nitrite reductase along with nitrate/nitrate transporters and nitronate monooxygenase were evident, suggesting that strain HL2708#2 may be able to denitrify extracellular nitroalkenes to ammonia.

The Complete Mitochondrial Genome and Molecular Phylogeny of the Flathead Platycephalus cultellatus Richardson, 1846 from Vietnam (Teleostei; Scorpaeniformes) (베트남 Platycephalus cultellatus Richardson, 1846 (Teleostei; Scorpaeniformes)의 전장 미토콘드리아 유전체와 분자계통)

  • Tran, Biet Thanh;Nguyen, Tu Van;Choi, Youn Hee;Kim, Keun-Yong;Heo, Jung Soo;Kim, Keun-Sik;Ryu, Jung-Hwa;Kim, Kyeong Mi;Yoon, Moongeun
    • Korean Journal of Ichthyology
    • /
    • v.33 no.4
    • /
    • pp.217-225
    • /
    • 2021
  • The family Platycephalidae is a taxonomic group of economically important demersal flathead fishes that predominantly occupy tropical or temperate estuaries and coastal environments of the Indo-Pacific oceans and the Mediterranean Sea. In this study, we for the first time analyzed the complete mitochondrial genome (mitogenome) of the flathead Platycephalus cultellatus Richardson, 1846 from Vietnam by Next Generation Sequencing method. Its mitogenome was 16,641 bp in total length, comprising 13 protein-coding genes (PCGs), two ribosomal RNA genes, and 22 transfer RNA genes. The gene composition and order of the mitogenome were identical to those of typical vertebrates. The phylogenetic trees were reconstructed based on the concatenated nucleotide sequence matrix of 13 PCGs and the partial sequence of a DNA barcoding marker, cox1 in order to determine its molecular phylogenetic position among the order Scorpaeniformes. The phylogenetic result revealed that P. cultellatus formed a monophyletic group with species belonging to the same family and consistently clustered with one nominal species, P. indicus, and two Platycephalus sp. specimens. Besides, the cox1 tree confirmed the taxonomic validity of our specimen by forming a monophyletic clade with its conspecific specimens. The mitogenome of P. cultellatus analyzed in this study will contribute valuable information for further study on taxonomy and phylogeny of flatheads.

Evolutionary Explanation for Beauveria bassiana Being a Potent Biological Control Agent Against Agricultural Pests

  • Han, Jae-Gu
    • 한국균학회소식:학술대회논문집
    • /
    • 2014.05a
    • /
    • pp.27-28
    • /
    • 2014
  • Beauveria bassiana (Cordycipitaceae, Hypocreales, Ascomycota) is an anamorphic fungus having a potential to be used as a biological control agent because it parasitizes a wide range of arthropod hosts including termites, aphids, beetles and many other insects. A number of bioactive secondary metabolites (SMs) have been isolated from B. bassiana and functionally verified. Among them, beauvericin and bassianolide are cyclic depsipeptides with antibiotic and insecticidal effects belonging to the enniatin family. Non-ribosomal peptide synthetases (NRPSs) play a crucial role in the synthesis of these secondary metabolites. NRPSs are modularly organized multienzyme complexes in which each module is responsible for the elongation of proteinogenic and non-protein amino acids, as well as carboxyl and hydroxyacids. A minimum of three domains are necessary for one NRPS elongation module: an adenylation (A) domain for substrate recognition and activation; a tholation (T) domain that tethers the growing peptide chain and the incoming aminoacyl unit; and a condensation (C) domain to catalyze peptide bond formation. Some of the optional domains include epimerization (E), heterocyclization (Cy) and oxidation (Ox) domains, which may modify the enzyme-bound precursors or intermediates. In the present study, we analyzed genomes of B. bassiana and its allied species in Hypocreales to verify the distribution of NRPS-encoding genes involving biosynthesis of beauvericin and bassianolide, and to unveil the evolutionary processes of the gene clusters. Initially, we retrieved completely or partially assembled genomic sequences of fungal species belonging to Hypocreales from public databases. SM biosynthesizing genes were predicted from the selected genomes using antiSMASH program. Adenylation (A) domains were extracted from the predicted NRPS, NRPS-like and NRPS-PKS hybrid genes, and used them to construct a phylogenetic tree. Based on the preliminary results of SM biosynthetic gene prediction in B. bassiana, we analyzed the conserved gene orders of beauvericin and bassianolide biosynthetic gene clusters among the hypocrealean fungi. Reciprocal best blast hit (RBH) approach was performed to identify the regions orthologous to the biosynthetic gene cluster in the selected fungal genomes. A clear recombination pattern was recognized in the inferred A-domain tree in which A-domains in the 1st and 2nd modules of beauvericin and bassianolide synthetases were grouped in CYCLO and EAS clades, respectively, suggesting that two modules of each synthetase have evolved independently. In addition, inferred topologies were congruent with the species phylogeny of Cordycipitaceae, indicating that the gene fusion event have occurred before the species divergence. Beauvericin and bassianolide synthetases turned out to possess identical domain organization as C-A-T-C-A-NM-T-T-C. We also predicted precursors of beauvericin and bassianolide synthetases based on the extracted signature residues in A-domain core motifs. The result showed that the A-domains in the 1st module of both synthetases select D-2-hydroxyisovalerate (D-Hiv), while A-domains in the 2nd modules specifically activate L-phenylalanine (Phe) in beauvericin synthetase and leucine (Leu) in bassianolide synthetase. antiSMASH ver. 2.0 predicted 15 genes in the beauvericin biosynthetic gene cluster of the B. bassiana genome dispersed across a total length of approximately 50kb. The beauvericin biosynthetic gene cluster contains beauvericin synthetase as well as kivr gene encoding NADPH-dependent ketoisovalerate reductase which is necessary to convert 2-ketoisovalarate to D-Hiv and a gene encoding a putative Gal4-like transcriptional regulator. Our syntenic comparison showed that species in Cordycipitaceae have almost conserved beauvericin biosynthetic gene cluster although the gene order and direction were sometimes variable. It is intriguing that there is no region orthologous to beauvericin synthetase gene in Cordyceps militaris genome. It is likely that beauvericin synthetase was present in common ancestor of Cordycipitaceae but selective gene loss has occurred in several species including C. militaris. Putative bassianolide biosynthetic gene cluster consisted of 16 genes including bassianolide synthetase, cytochrome P450 monooxygenase, and putative Gal4-like transcriptional regulator genes. Our synteny analysis found that only B. bassiana possessed a bassianolide synthetase gene among the studied fungi. This result is consistent with the groupings in A-domain tree in which bassianolide synthetase gene found in B. bassiana was not grouped with NRPS genes predicted in other species. We hypothesized that bassianolide biosynthesizing cluster genes in B. bassiana are possibly acquired by horizontal gene transfer (HGT) from distantly related fungi. The present study showed that B. bassiana is the only species capable of producing both beauvericin and bassianolide. This property led to B. bassiana infect multiple hosts and to be a potential biological control agent against agricultural pests.

  • PDF