• 제목/요약/키워드: Ribosomal protein

검색결과 248건 처리시간 0.026초

Immunohistochemical Studies of Human Ribosomal Protein S3 (rpS3)

  • Choi, Soo-Hyun;Kim, So-Young;An, Jae-Jin;Lee, Sun-Hwa;Kim, Dae-Won;Won, Moo-Ho;Kang, Tae-Cheon;Park, Jin-Seu;Eum, Won-Sik;Kim, Joon;Choi, Soo-Young
    • BMB Reports
    • /
    • 제39권2호
    • /
    • pp.208-215
    • /
    • 2006
  • The human ribosomal protein S3 (rpS3) was expressed in E. coli using the pET-I5b vector and the monoclonal antibodies (mAbs) were produced and characterized. A total of five hybridoma cell lines were established and the antibodies recognized a single band of molecular weight of 33 kDa on immunoblot with purified rpS3. When the purified rpS3 was incubated with the mAbs, the UV endonuclease activity of rpS3 was inhibited up to a maximum of 49%. The binding affinity of mAbs to rpS3 determined by using a biosensor technology showed that they have similar binding affinities. Using the anti-rpS3 antibodies as probes, we investigated the cross-reactivities of various other mammalian brain tissues and cell lines, including human. The immunoreactive bands on Western blots appeared to be the same molecular mass of 33 kDa in all animal species tested. They also appear to be extensively cross-reactive among different organs in rat. These results demonstrated that only one type of immunologically similar rpS3 protein is present in all of the mammalian brain tissues including human. Furthermore, these antibodies were successfully applied in immunohistochemistry in order to detect rpS3 in the gerbil brain tissues. Among the various regions in the brain tissues, the rpS3 positive neurons were predominantly observed in the ependymal cells, hippocampus and substantia nigra pars compacta. The different distributions of rpS3 in brain tissues reply that rpS3 protein may play an important second function in the neuronal cells.

TATA box binding protein and ribosomal protein 4 are suitable reference genes for normalization during quantitative polymerase chain reaction study in bovine mesenchymal stem cells

  • Jang, Si-Jung;Jeon, Ryoung-Hoon;Kim, Hwan-Deuk;Hwang, Jong-Chan;Lee, Hyeon-Jeong;Bae, Seul-Gi;Lee, Sung-Lim;Rho, Gyu-Jin;Kim, Seung-Joon;Lee, Won-Jae
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제33권12호
    • /
    • pp.2021-2030
    • /
    • 2020
  • Objective: Quantitative polymerase chain reaction (qPCR) has been extensively used in the field of mesenchymal stem cell (MSC) research to elucidate their characteristics and clinical potential by normalization of target genes against reference genes (RGs), which are believed to be stably expressed irrespective of various experimental conditions. However, the expression of RGs is also variable depending on the experimental conditions, which may lead to false or contradictory conclusions upon normalization. Due to the current lack of information for a clear list of stable RGs in bovine MSCs, we conducted this study to identify suitable RGs in bovine MSCs. Methods: The cycle threshold values of ten traditionally used RGs (18S ribosomal RNA [18S], beta-2-microglobulin [B2M], H2A histone family, member Z [H2A], peptidylprolyl isomerase A [PPIA], ribosomal protein 4 [RPL4], succinate dehydrogenase complex, subunit A [SDHA], beta actin [ACTB], glyceraldehyde-3-phosphate dehydrogenase [GAPDH], TATA box binding protein [TBP], and hypoxanthine phosphoribosyltrasnfrase1 [HPRT1]) in bovine bone marrow-derived MSCs (bBMMSCs) were validated for their stabilities using three types of RG evaluation algorithms (geNorm, Normfinder, and Bestkeeper). The effect of validated RGs was then verified by normalization of lineage-specific genes (fatty acid binding protein 4 [FABP4] and osteonectin [ON]) expressions during differentiations of bBMMSCs or POU class 5 homeobox 1 (OCT4) expression between bBMMSCs and dermal skins. Results: Based on the results obtained for the three most stable RGs from geNorm (TBP, RPL4, and H2A), Normfinder (TBP, RPL4, and SDHA), and Bestkeeper (TBP, RPL4, and SDHA), it was comprehensively determined that TBP and RPL4 were the most stable RGs in bBMMSCs. However, traditional RGs were suggested to be the least stable (18S) or moderately stable (GAPDH and ACTB) in bBMMSCs. Normalization of FABP4 or ON against TBP, RPL4, and 18S presented significant differences during differentiation of bBMMSCs. However, although significantly low expression of OCT4 was detected in dermal skins compared to that in bBMMSCs when TBP and RPL4 were used in normalization, normalization against 18S exhibited no significance. Conclusion: This study proposes that TBP and RPL4 were suitable as stable RGs for qPCR study in bovine MSCs.

Identification of Two Novel Amalgaviruses in the Common Eelgrass (Zostera marina) and in Silico Analysis of the Amalgavirus +1 Programmed Ribosomal Frameshifting Sites

  • Park, Dongbin;Goh, Chul Jun;Kim, Hyein;Hahn, Yoonsoo
    • The Plant Pathology Journal
    • /
    • 제34권2호
    • /
    • pp.150-156
    • /
    • 2018
  • The genome sequences of two novel monopartite RNA viruses were identified in a common eelgrass (Zostera marina) transcriptome dataset. Sequence comparison and phylogenetic analyses revealed that these two novel viruses belong to the genus Amalgavirus in the family Amalgaviridae. They were named Zostera marina amalgavirus 1 (ZmAV1) and Zostera marina amalgavirus 2 (ZmAV2). Genomes of both ZmAV1 and ZmAV2 contain two overlapping open reading frames (ORFs). ORF1 encodes a putative replication factory matrix-like protein, while ORF2 encodes a RNA-dependent RNA polymerase (RdRp) domain. The fusion protein (ORF1+2) of ORF1 and ORF2, which mediates RNA replication, was produced using the +1 programmed ribosomal frameshifting (PRF) mechanism. The +1 PRF motif sequence, UUU_CGN, which is highly conserved among known amalgaviruses, was also found in ZmAV1 and ZmAV2. Multiple sequence alignment of the ORF1+2 fusion proteins from 24 amalgaviruses revealed that +1 PRF occurred only at three different positions within the 13-amino acid-long segment, which was surrounded by highly conserved regions on both sides. This suggested that the +1 PRF may be constrained by the structure of fusion proteins. Genome sequences of ZmAV1 and ZmAV2, which are the first viruses to be identified in common eelgrass, will serve as useful resources for studying evolution and diversity of amalgaviruses.

Selection and evaluation of reference genes for gene expression using quantitative real-time PCR in Mythimna separata walker (Lepidoptera: Noctuidae)

  • ZHANG, Bai-Zhong;LIU, Jun-Jie;CHEN, Xi-Ling;YUAN, Guo-Hui
    • Entomological Research
    • /
    • 제48권5호
    • /
    • pp.390-399
    • /
    • 2018
  • In order to precisely assess gene expression levels, the suitable internal reference genes must be served to quantify real-time reverse transcription polymerase chain reaction (RT-qPCR) data. For armyworm, Mythimna separata, which reference genes are suitable for assessing the level of transcriptional expression of target genes have yet to be explored. In this study, eight common reference genes, including ${\beta}$-actin (${\beta}$-ACT), 18 s ribosomal (18S), 28S ribosomal (28S), glyceraldehyde-3-phosphate (GAPDH), elongation fator-alpha ($EF1{\alpha}$), TATA box binding protein (TBP), ribosomal protein L7 (RPL7), and alpha-tubulin (${\alpha}$-TUB) that in different developmental stages, tissues and insecticide treatments of M. separata were evaluated. To further explore whether these genes were suitable to serve as endogenous controls, three software-based approaches (geNorm, BestKeeper, and NormFinder), the delta Ct method, and one web-based comprehensive tool (RefFinder) were employed to analyze and rank the tested genes. The optimal number of reference genes was determined using the geNorm program, and the suitability of particular reference genes was empirically validated according to normalized HSP70, and MsepCYP321A10 gene expression data. We found that the most suitable reference genes for the different experimental conditions. For developmental stages, 28S/RPL7 were the optimal reference genes, both $RPL7/EF1{\alpha}$ were suitable for experiments of different tissues, whereas for insecticide treatments, $28S/{\alpha}-TUB$ were suitable for normalizations of expression data. In addition, $28S/{\alpha}-TUB$ were the suitable reference genes because they have the most stable expression among different developmental stages, tissues and insecticide treatments. Our work is the first report on reference gene selection in M. separata, and might serve as a precedent for future gene expression studies.

Human T-cell leukemia Virus Type I (HTLV-I) 에서 RNA 고차구조가 pol 유전자의 발현에 필요한 Ribosomal Frameshifting 에 미치는 영향 (Effects of Higher-order RNA Structure on Ribosomal Frameshifting Event for the Expression of pol Gene Products of Human T-cell Leukemia Virus Type I (HTLV-l) )

  • 남석현
    • 미생물학회지
    • /
    • 제30권6호
    • /
    • pp.472-478
    • /
    • 1992
  • HTLV-1 이 pol 유전자산물을 합성하기 위해서는 genome-size mRNA 를 번역해 나아가는 ribosome 이 -1 방향으로 두차례 frame 을 바꾸어야 한다. 우리는 단 한차계의 frameshifting 만으로도 많은 양의 Gag-Pro-Pol polyprotein 의 합성어 가능하도록 gag 와 pro 유전자의 frame 을 연결시킨 mutant RNA 를 제작하였다. 이 돌연변이를 이용하여 ribosome 의 shift site 하류영역내에 형성이 예상되는 RNA 의 이차구조 또는 삼차 구조가 -1 frameshifting 을 결정하는 인자로서 작용하는지의 여부를 조사하였다. 결손변이주의를 해석한 결과 pro-pol 중첩영역에서 효율적으로 frameshifting 이 일어나기 위해서는 stem-loop 가 필수적으로 형성되어야 하지만 pseudoknot 의 형성은 그다지 중요하지 않다는 사실을 알았다.

  • PDF

Genetic Analysis of a Structural Motif Within the Conserved 530 Stem-Loop of Escherichia coli 16S rRNA

  • Szatkiewicz Jin P.;Cho Hyun-Dae;Ryou Sang-Mi;Kim Jong-Myung;Cunningham Philip R.;Lee Kang-Seok
    • Journal of Microbiology and Biotechnology
    • /
    • 제16권4호
    • /
    • pp.569-575
    • /
    • 2006
  • The 530 stem-loop is a 46 nucleotide stem-loop structure found in all small-subunit ribosomal RNAs. Phylogenetic and mutational studies by others suggest the requirement for Watson-Crick interactions between the nucleotides 505-507 and 524-526 (530 pseudoknot), which are highly conserved. To examine the nature and functional significance of these interactions, a random mutagenesis experiment was conducted in which the nucleotides in the proposed pseudoknot were simultaneously mutated and functional mutants were selected and analyzed. Genetic analysis revealed that the particular nucleotide present at each position except 524 was not exclusively critical to the selection of functional mutants. It also indicated that basepairing interactions between the positions 505-507 and 524-526 were required for ribosomal function, and much weaker base-pairing interactions than those of the wild-type also allowed high ribosomal function. Our results support the hypothesis that the 530 pseudoknot structure may undergo a 'conformational switch' between folded and unfolded states during certain stages of the protein synthesis process by interacting with other ligands present in its environment.

The trinity of ribosome-associated quality control and stress signaling for proteostasis and neuronal physiology

  • Park, Jumin;Park, Jongmin;Lee, Jongbin;Lim, Chunghun
    • BMB Reports
    • /
    • 제54권9호
    • /
    • pp.439-450
    • /
    • 2021
  • Translating ribosomes accompany co-translational regulation of nascent polypeptide chains, including subcellular targeting, protein folding, and covalent modifications. Ribosome-associated quality control (RQC) is a co-translational surveillance mechanism triggered by ribosomal collisions, an indication of atypical translation. The ribosome-associated E3 ligase ZNF598 ubiquitinates small subunit proteins at the stalled ribosomes. A series of RQC factors are then recruited to dissociate and triage aberrant translation intermediates. Regulatory ribosomal stalling may occur on endogenous transcripts for quality gene expression, whereas ribosomal collisions are more globally induced by ribotoxic stressors such as translation inhibitors, ribotoxins, and UV radiation. The latter are sensed by ribosome-associated kinases GCN2 and ZAKα, activating integrated stress response (ISR) and ribotoxic stress response (RSR), respectively. Hierarchical crosstalks among RQC, ISR, and RSR pathways are readily detectable since the collided ribosome is their common substrate for activation. Given the strong implications of RQC factors in neuronal physiology and neurological disorders, the interplay between RQC and ribosome-associated stress signaling may sustain proteostasis, adaptively determine cell fate, and contribute to neural pathogenesis. The elucidation of underlying molecular principles in relevant human diseases should thus provide unexplored therapeutic opportunities.

Animal Models for Aging and Neurodegenerative Diseases: Brain Cell Apoptosis in the Dog and its Possible Mechanisms

  • Nakayama, Hiroyuki;Kajikawa, Satoru;Doi, Kunio
    • Toxicological Research
    • /
    • 제17권
    • /
    • pp.71-77
    • /
    • 2001
  • The brain of the aged dog possesses senile plaques and amyloid angiopathy, which characterize Alzheimer's disease brains. We have defined the dementia condition of aged dogs and examined which mechanism(s) is responsible for the condition. A series of studies revealed that the dementia condition in aged dogs is significantly related to the number of apoptotic brain cells including both neurons and glial cells, but not to the number of senile plaques. On the other hand, 5-azacytidine (5AzC) is a cytidine analogue, and is thought to induce kinds of cell differentiation possibly through hypomethylation of genomic DNA. We have revealed neuronal apoptosis induced in 5AzC-treated fetal mice and PC12 cells. The ribosomal protein L4 (rpL4) gene is expressed prior to the apoptosis in the PC12 cell system. Therefore, the involvement of the rpL4 gene expression in age-related brain cell apoptosis in dogs may contribute to the investigation of Alzheimer's dementia.

  • PDF

진딧물 rRNA 유전장에 특이적으로 결합하는 단백질 탐색 (Detection of the Specific DNA-binding Proteins for the Aphid rRNA)

  • O-Yu Kwon;Dong-Hee Lee;Tae-Young Kwon
    • 한국응용곤충학회지
    • /
    • 제34권2호
    • /
    • pp.100-105
    • /
    • 1995
  • 정확한 in vitro 전사가 일어날 수 있는 진딧물의 세포추출액을 제조하였다. 전사를 직접 조절할 수 있는 단백질 인자를 규명하기 위하여 전사개시점과 그의 상류에 결합하는 DNA 결합단백질을 탐색했다. 전사개시점을 포함하는 단편 A(-194/23)에는 52kDa, 50kDa, 40kDa의 단백질들이 결합했으며 전사개시점 상류의 DNA 단편 B(-393/-263)에는 52kDa, 50kDa, 40kDa의 단백질들이 결합한 반면 DNA 단편 C(-263/-195)는 53kDa단백질만이 결합했다. 그리고 이들 DNA 결합단백질들의 DNA 결합 활성에는 양이온이 요구되었다.

  • PDF