• Title/Summary/Keyword: Ribonucleoprotein

Search Result 63, Processing Time 0.024 seconds

Analysis of C. elegans VIG-1 Expression

  • Shin, Kyoung-Hwa;Choi, Boram;Park, Yang-Seo;Cho, Nam Jeong
    • Molecules and Cells
    • /
    • v.26 no.6
    • /
    • pp.554-557
    • /
    • 2008
  • Double-stranded RNA (dsRNA) induces gene silencing in a sequence-specific manner by a process known as RNA interference (RNAi). The RNA-induced silencing complex (RISC) is a multi-subunit ribonucleoprotein complex that plays a key role in RNAi. VIG (Vasa intronic gene) has been identified as a component of Drosophila RISC; however, the role VIG plays in regulating RNAi is poorly understood. Here, we examined the spatial and temporal expression patterns of VIG-1, the C. elegans ortholog of Drosophila VIG, using a vig-1::gfp fusion construct. This construct contains the 908-bp region immediately upstream of vig-1 gene translation initiation site. Analysis by confocal microscopy demonstrated GFP-VIG-1 expression in a number of tissues including the pharynx, body wall muscle, hypodermis, intestine, reproductive system, and nervous system at the larval and adult stages. Furthermore, western blot analysis showed that VIG-1 is present in each developmental stage examined. To investigate regulatory sequences for vig-1 gene expression, we generated constructs containing deletions in the upstream region. It was determined that the GFP expression pattern of a deletion construct (${\Delta}-908$ to -597) was generally similar to that of the non-deletion construct. In contrast, removal of a larger segment (${\Delta}-908$ to -191) resulted in the loss of GFP expression in most cell types. Collectively, these results indicate that the 406-bp upstream region (-596 to -191) contains essential regulatory sequences required for VIG-1 expression.

The Plant Cellular Systems for Plant Virus Movement

  • Hong, Jin-Sung;Ju, Ho-Jong
    • The Plant Pathology Journal
    • /
    • v.33 no.3
    • /
    • pp.213-228
    • /
    • 2017
  • Plasmodesmata (PDs) are specialized intercellular channels that facilitate the exchange of various molecules, including sugars, ribonucleoprotein complexes, transcription factors, and mRNA. Their diameters, estimated to be 2.5 nm in the neck region, are too small to transfer viruses or viral genomes. Tobacco mosaic virus and Potexviruses are the most extensively studied viruses. In viruses, the movement protein (MP) is responsible for the PD gating that allows the intercellular movement of viral genomes. Various host factors interact with MP to regulate complicated mechanisms related to PD gating. Virus replication and assembly occur in viral replication complex (VRC) with membrane association, especially in the endoplasmic reticulum. VRC have a highly organized structure and are highly regulated by interactions among the various host factors, proteins encoded by the viral genome, and the viral genome. Virus trafficking requires host machineries, such as the cytoskeleton and the secretory systems. MP facilitates the virus replication and movement process. Despite the current level of understanding of virus movement, there are still many unknown and complex interactions between virus replication and virus movement. While numerous studies have been conducted to understand plant viruses with regards to cell-to-cell movement and replication, there are still many knowledge gaps. To study these interactions, adequate research tools must be used such as molecular, and biochemical techniques. Without such tools, virologists will not be able to gain an accurate or detailed understanding of the virus infection process.

hnRNPK-regulated PTOV1-AS1 modulates heme oxygenase-1 expression via miR-1207-5p

  • Shin, Chang Hoon;Ryu, Seongho;Kim, Hyeon Ho
    • BMB Reports
    • /
    • v.50 no.4
    • /
    • pp.220-225
    • /
    • 2017
  • Antisense transcripts were initially identified as transcriptional noise, but have since been reported to play an important role in the quality control of miRNA functions. In this report, we tested the hypothesis that heterogeneous nuclear ribonucleoprotein K (hnRNPK) regulates miRNA function via competitive endogenous RNAs, such as pseudogenes, long non-coding RNAs, and antisense transcripts. Based on analyses of RNA sequencing data, the knockdown of hnRNPK decreased the antisense PTOV1-AS1 transcript which harbors five binding sites for miR-1207-5p. We identified heme oxygenase-1 (HO-1) mRNA as a novel target of miR-1207-5p by western blotting and Ago2 immunoprecipitation. The knockdown of hnRNPK or PTOV1-AS1 suppressed HO-1 expression by increasing the enrichment of HO-1 mRNA in miR-1207-5p-mediated miRISC. Downregulation of HO-1 by a miR-1207-5p mimic or knockdown of hnRNPK and PTOV1-AS1 inhibited the proliferation and clonogenic ability of HeLa cells. Taken together, our results demonstrate that hnRNPK-regulated PTOV1-AS1 modulates HO-1 expression via miR-1207-5p.

Identifying the cellular location of brain cytoplasmic 200 RNA using an RNA-recognizing antibody

  • Shin, Heegwon;Lee, Jungmin;Kim, Youngmi;Jang, Seonghui;Ohn, Takbum;Lee, Younghoon
    • BMB Reports
    • /
    • v.50 no.6
    • /
    • pp.318-322
    • /
    • 2017
  • Brain cytoplasmic 200 RNA (BC200 RNA) is a neuron-specific non-coding RNA, implicated in the inhibition of local synaptodendritic protein synthesis, and is highly expressed in some cancer cells. Although BC200 RNA has been shown to inhibit translation in vitro, the cellular location of this inhibition is unknown. In this study, we used a BC200 RNA-recognizing antibody to identify the cellular locations of BC200 RNA in HeLa cervical carcinoma cells. We observed punctate signals in both the cytoplasm and nucleus, and further discovered that BC200 RNA co-localized with the p-body decapping enzyme, DCP1A, and the heterogeneous nuclear ribonucleoprotein E2 (hnRNP E2). The latter is a known BC200 RNA-binding partner protein and a constituent of p-bodies. This suggests that BC200 RNA is localized to p-bodies via hnRNP E2.

14-3-3-Associated Proteins in Helicobacter pylori-Infected Gastric Epithelial Cells (Helicobacterpylori에 감염된 위상피세포에서 14-3-3 결합 단백질의 변화)

  • Chung, Hae-Yun
    • The Korean Journal of Food And Nutrition
    • /
    • v.24 no.2
    • /
    • pp.258-267
    • /
    • 2011
  • 14-3-3 is a highly conserved, ubiquitously expressed protein family. It associates with diverse cellular proteins through its specific phosphoserine/phosphothreonine-binding activity and thus contributes to the regulation of crucial cellular processes such as metabolism, signal transduction, cell-cycle control, apoptosis, protein trafficking, transcription and stress responses. This study aims to determine changes in levels of 14-3-3 isoforms and 14-3-3 - associated proteins in Helicobacter pylori(H. pylori)-infected gastric epithelial AGS cells. AGS cells were stimulated with H. pylori(NCTC 11637) at the ratio of 300:1(bacterium:cell). Western blot analysis revealed that 14-3-3 $\sigma$ was elevated at 3 hr after H. pylori treatment. Other isoforms were not significantly affected by H. pylori infection. Using immunoprecipitation to 14-3-3 $\sigma$, followed by proteomic analysis, we found that S phase kinase associated protein isoform 2 bound to 14-3-3 $\sigma$ has increased. In contrast, three proteins (DEAD-box polypeptide 3, heterogeneous nuclear ribonucleoprotein H2 and WD repeat-containing protein isoform 1) bound to 14-3-3 decreased by H. pylori infection. Our results suggest that 14-3-3 may play an important regulatory role in H. pylori-induced signal transduction in gastric epithelial cells.

The Pleiotropy of Telomerase against Cell Death

  • Sung, Young Hoon;Choi, Yoon Sik;Cheong, Cheolho;Lee, Han-Woong
    • Molecules and Cells
    • /
    • v.19 no.3
    • /
    • pp.303-309
    • /
    • 2005
  • The end of eukaryotic genomic DNA is capped by a specialized structure called as "telomere" which consists of the repetitive array of nucleotide sequence, TTAGGG, in humans and mice, and a variety of binding proteins. Telomerase is a ribonucleoprotein (RNP) complex responsible for the elongation of telomeres to maintain the genomic integrity, and is composed of telomerase reverse transcriptase (TERT), telomerase RNA component (TERC), and their associated factors regulating the catalytic activity of telomerase. Although it is now apparent that telomerase protects cells from apoptosis via the maintenance of genomic integrity by stabilizing telomeres, our understanding for the physiological role of telomerase is yet far from completion, and emerging evidence suggests that telomerase has additional extratelomeric roles in mediating cell survival and anti-apoptotic functions against various cytotoxic stresses. Here we summarize and discuss how telomerase and telomeres are involved in mediating cellular protection against apoptosis.

Functions of DEAD box RNA helicases DDX5 and DDX17 in chromatin organization and transcriptional regulation

  • Giraud, Guillaume;Terrone, Sophie;Bourgeois, Cyril F.
    • BMB Reports
    • /
    • v.51 no.12
    • /
    • pp.613-622
    • /
    • 2018
  • RNA helicases DDX5 and DDX17 are multitasking proteins that regulate gene expression in different biological contexts through diverse activities. Special attention has long been paid to their function as coregulators of transcription factors, providing insight about their functional association with a number of chromatin modifiers and remodelers. However, to date, the variety of described mechanisms has made it difficult to understand precisely how these proteins work at the molecular level, and the contribution of their ATPase domain to these mechanisms remains unclear as well. In light of their association with long noncoding RNAs that are key epigenetic regulators, an emerging view is that DDX5 and DDX17 may act through modulating the activity of various ribonucleoprotein complexes that could ensure their targeting to specific chromatin loci. This review will comprehensively describe the current knowledge on these different mechanisms. We will also discuss the potential roles of DDX5 and DDX17 on the 3D chromatin organization and how these could impact gene expression at the transcriptional and post-transcriptional levels.

Telomerase Activity is Constitutively Expressed in the Murine $CD8^+$ T Cells and Controlled Transcriptionally and Post-Translationally

  • Kim, SoJung;Kim, MiHyung;Kim, KilHyoun
    • IMMUNE NETWORK
    • /
    • v.4 no.3
    • /
    • pp.166-175
    • /
    • 2004
  • Background: Telomerase, a ribonucleoprotein enzyme capable of synthesizing telomeric repeats, attracts attention for its possible role in determining the replicative capacity of normal somatic cells, transformed cells, and cells of the germline lineage. Differently from normal somatic cells with no telomerase activity, normal lymphocytes has been reported to have telomerase activity comparable to that found in transformed cells during development and activation, which substantiate a role in supporting the capacity of lymphocytes for extensive clonal expansion. Methods: Here, in order to define the telomerase regulation in murine T lymphocytes, telomerase activity in cloned murine $CD8^+$ T cells and naive $CD8^+$ T cells isolated from C57BL/6 mice was examined. Next, the regulatory mechanism of telomerase activity at transcriptional and post- translational levels was investigated by determining the expression level of the TERT protein, a key component for telomerase activity. Results: It was demonstrated that telomerase activity was expressed in an inactivated state as well as in an activated state in the murine $CD8^+$ T lymphocytes by using TRAP assay. The increase of telomerase activity was partially dependent on the net increase of TERT expression. Also, telomerase activity was decreased after treatment with protein kinase inhibitors, indicating that telomerase activation was prevented by inhibition of phosphorylation. Conclusion: Therefore, these results suggest that telomerase activity is constitutively expressed in the murine resting T lymphocytes and controlled by both transcriptional regulation and post- ranslational modifications.

Purification and Structural Characterization of Cold Shock Protein from Listeria monocytogenes

  • Lee, Ju-Ho;Jeong, Ki-Woong;Kim, Yang-Mee
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.8
    • /
    • pp.2508-2512
    • /
    • 2012
  • Cold shock proteins (CSPs) are a family of proteins induced at low temperatures. CSPs bind to single-stranded nucleic acids through the ribonucleoprotein 1 and 2 (RNP 1 and 2) binding motifs. CSPs play an essential role in cold adaptation by regulating transcription and translation via molecular chaperones. The solution nuclear magnetic resonance (NMR) or X-ray crystal structures of several CSPs from various microorganisms have been determined, but structural characteristics of psychrophilic CSPs have not been studied. Therefore, we optimized the purification process to obtain highly pure Lm-Csp and determined the three-dimensional structure model of Lm-Csp by comparative homology modeling using MODELLER on the basis of the solution NMR structure of Bs-CspB. Lm-Csp consists of a ${\beta}$-barrel structure, which includes antiparallel ${\beta}$ strands (G4-N10, F15-I18, V26-H29, A46-D50, and P58-Q64). The template protein, Bs-CspB, shares a similar ${\beta}$ sheet structure and an identical chain fold to Lm-Csp. However, the sheets in Lm-Csp were much shorter than those of Bs-CspB. The Lm-Csp side chains, E2 and R20 form a salt bridge, thus, stabilizing the Lm-Csp structure. To evaluate the contribution of this ionic interaction as well as that of the hydrophobic patch on protein stability, we investigated the secondary structures of wild type and mutant protein (W8, F15, and R20) of Lm-Csp using circular dichroism (CD) spectroscopy. The results showed that solvent-exposed aromatic side chains as well as residues participating in ionic interactions are very important for structural stability. Further studies on the three-dimensional structure and dynamics of Lm-Csp using NMR spectroscopy are required.

Selection and Analysis of Genomic Sequence-Derived RNA Motifs Binding to C5 Protein

  • Kim, Kwang-sun;Ryoo, Hye-jin;Lee, June-Hyung;Kim, Mee-hyun;Kim, Tae-yeon;Kim, Yool;Han, Kook;Lee, Seol-Hoon;Lee, Young-hoon
    • Bulletin of the Korean Chemical Society
    • /
    • v.27 no.5
    • /
    • pp.699-704
    • /
    • 2006
  • Escherichia coli RNase P is a ribonucleoprotein composed of M1 RNA and C5 protein. Previously, analysis of RNA aptamers selected for C5 protein from a synthetic RNA library showed that C5 protein could bind various RNA molecules as an RNA binding protein. In this study, we searched cellular RNA motifs that could be recognized by C5 protein by a genomic SELEX approach. We found various C5 protein-binding RNA motifs derived from E. coli genomic sequences. Our results suggest that C5 protein interacts with various cellular RNA species in addition to M1 RNA.