• Title/Summary/Keyword: Ribbed connection

Search Result 8, Processing Time 0.022 seconds

Evaluation on Flexural Performance of Precast Bridge Decks with Ribbed Connection (요철형 이음단면을 갖는 프리캐스트 교량 바닥판의 휨성능 평가)

  • Shin, Dong-Ho;Park, Se-Jin;Oh, Hyun-Chul;Kim, In-Gyu;Kim, Young-Jin
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.19 no.3
    • /
    • pp.1-9
    • /
    • 2015
  • Due to the increasing number of deteriorated bridges worldwide, the importance of maintenance and replacement of existing bridges are being emphasized. Cast-in-place concrete deck which is mainly applied to deck replacement of existing bridges have problems such as deterioration concerns by initial crack, labor cost increase, difficulties of maintenance and replacement, construction time increase, and indirect cost increase by traffic congestion. On the contrary, a precast concrete deck is considered as an effective alternative because of its quality assurance and accelerated construction. The connection method ensuring the required strength and durability is especially important, because the connection part of the precast concrete deck is vulnerable to cracks and leakage. Therefore, this study proposes precast bridge decks with ribbed connection which are more improved than existing bridge deck joints, and flexural performance is verified through various parameter tests.

Evaluation on Structural Performance of Joint with Asymmetric Ribbed Connection Details used in Precast Bridge Deck (비대칭 격벽단면을 갖는 프리캐스트 바닥판 이음부의 구조성능 평가)

  • Chung, Chul-Hun;Byun, Tae-Kwan;Kim, In-Gyu;Shin, Dong-Ho;Lee, Han-Joo
    • Journal of the Korea Concrete Institute
    • /
    • v.29 no.2
    • /
    • pp.159-167
    • /
    • 2017
  • A precast concrete deck system is considered an effective alternative in terms of its rapid construction and quality assurance than cast-in-place concrete deck. In precast concrete deck system, structural performance and serviceability are mostly determined by the connection methods between the precast decks. This research proposes more improved precast deck system with asymmetric ribbed connection details improving the disadvantage of previous precast deck system such as difficulties in assembling precast decks. And in this precast deck system, a separate form is not required at the site because partition wall of the precast decks serves as a form when placing non-shrinkage mortar in the connection part of the precast decks. Therefore, rapid construction is possible. Flexural performance is verified through load tests considering main parameter such as rib length in the precast deck connection. From the test results, it can be inferred that the development of the rebar and prevention of adhesion failure in the partition wall of the precast deck system are important factors in securing the flexural performance. Although the structural performance of the precast deck system with asymmetric connection details is gradually reduced as the rib length in the precast deck connection increases, the proposed precast deck system shows sufficient flexural performance and can be applied to the connection part of precast decks effectively.

Seismic performances of RC columns reinforced with screw ribbed reinforcements connected by mechanical splice

  • Lee, Se-Jung;Lee, Deuck Hang;Kim, Kang Su;Oh, Jae-Yuel;Park, Min-Kook;Yang, Il-Seung
    • Computers and Concrete
    • /
    • v.12 no.2
    • /
    • pp.131-149
    • /
    • 2013
  • Various types of reinforcement splicing methods have been developed and implemented in reinforced concrete construction projects for achieving the continuity of reinforcements. Due to the complicated reinforcement arrangements and the difficulties in securing bar spacing, the traditional lap splicing method, which has been widely used in reinforced concrete constructions, often shows low constructability and difficulties in quality control. Also, lap spliced regions are likely to be over-reinforced, which may not be desirable in seismic design. On the other hand, mechanical splicing methods can offer simple and clear arrangements of reinforcement. In order to utilize the couplers for the ribbed-deformed bars, however, additional screw processing at the ends of reinforcing bars is typically required, which often lead to performance degradations of reinforced concrete members due to the lack of workmanship in screw processing or in adjusting the length of reinforcing bars. On the contrary, the use of screw-ribbed reinforcements can easily solve these issues on the mechanical splicing methods, because it does not require the screw process on the bar. In this study, the mechanical coupler suitable for the screw-ribbed reinforcements has been developed, in which any gap between the reinforcements and sleeve device can be removed by grouting high-flow inorganic mortar. This study presents the uniaxial tension tests on the screw-ribbed reinforcement with the mechanical sleeve devices and the cyclic loading tests on RC columns with the developed coupler. The test results show that the mechanical sleeve connection developed in this study has an excellent splicing performance, and that it is applicable to reinforced concrete columns with a proper confinement by hoop reinforcement.

Fatigue Performance of Precast Decks using Ribbed Loop Joints in a Two-Girder Continuous Composite Bridge (2거더 연속합성형교 요철형 루프이음 프리캐스트 바닥판의 피로성능)

  • Lee, Han-Joo;Yeo, Woon-Young;Shin, Dong-Ho;Kim, In-Gyu;Park, Se-Jin
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.23 no.1
    • /
    • pp.85-93
    • /
    • 2019
  • Structural performance and serviceability of precast deck system are mostly determined by connection details between precast decks. Particularly, since the bridge deck is under repeated loads such as traffic loads, fatigue behavior and performance of joints should be investigated. In this study, a two-girder continuous composite bridge specimen was fabricated using the asymmetric ribbed loop joints, and static and fatigue load tests were conducted to evaluate the structural behavior and the crack pattern of the bridge deck. From the test results, the proposed precast deck system resulted in sufficient fatigue performance and failure strength. Therefore, the proposed precast deck system can be applied to the connection part of precast decks effectively.

Evaluation on Flexural Performance of Precast Decks with Ribbed Joint by FEM (유한요소해석에 의한 요철형 이음단면을 갖는 프리캐스트 바닥판의 휨성능 평가)

  • Oh, Hyun-Chul;Chung, Chul-Hun;Kang, Myoung-Gu;Park, Se-Jin;Shin, Dong-Ho
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.20 no.1
    • /
    • pp.85-94
    • /
    • 2016
  • In this study, a non-linear FEM model is presented to predict the static flexural performance of precast bridge decks with ribbed joint and is verified with previous experiment results through comparison. The several theory of material properties were applied to each mechanical properties in FEM model and FEM model's input variables were determined through experiment result and parametric study. The FEM results showed good accuracy in predicting the structural performance of the specimens and FEM model's average error rate was 5%. Also, each specimen's cracking aspect and failure mode can be predicted through FEM's plastic strain distribution. Thus, this FEM model can be used effectively for predicting the ultimate behavior and parametric study to development of design formula for joint.

Nonlinear Analysis for Negative Moment Distribution of MRS Slab End Joints (비선형 해석에 의한 MRS 슬래브 단부 접합부의 모멘트 분포 연구)

  • Moon, Jeong-Ho;Oh, Young-Hun;Lim, Jae-Hyung
    • Journal of the Korea Concrete Institute
    • /
    • v.23 no.2
    • /
    • pp.177-184
    • /
    • 2011
  • This paper describes an analytical study on the design approach of PC system with continuous connections at member ends. In multi-ribbed moment resisting slab (MRS) system, double tee members are connected continuously over inverted tee beams with the continuous reinforcements placed within topping concrete. Thus, negative moments are concentrated within the narrow connection area. In order to propose a design method, experimental results of the companion study were examined using detailed nonlinear analysis. Then nonlinear static analysis was used to evaluate the partial continuity effect and the moment redistribution mechanism. Material and cross sectional properties were obtained from experimental results of the companion study. Plastic hinge properties for nonlinear static analysis were modeled with cracking moment, nominal moment, corresponding member deformations, etc. The analysis results showed that a large amount of negative moment of MRS slab can be reduced by applying partial continuity and moment redistribution in MRS joint.

Evaluation on Structural Performance of Precast Bridge Deck Joint using HSFRC (고강도 강섬유보강콘크리트를 적용한 프리캐스트 바닥판 이음부의 구조성능 평가)

  • Lee, Han-Joo;Chung, Chul-Hun;Shin, Dong-Ho;Park, Se-Jin;Kim, In-Gyu
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.21 no.6
    • /
    • pp.196-205
    • /
    • 2017
  • In precast deck system, structural performance and serviceability are mostly determined by the connection methods between the precast decks. This study proposes precast deck system with asymmetric ribbed connection details using High Strength Fiber Reinforced Concrete(HSFRC) with filler. To verify the proposed method, the flexural performance experiment was carried out with variation of joint cross section type and splice rebar details. From the test results, regardless of joint details, spliced tensile rebars of specimens were deformed to yielding strain level. Also, all types of specimens resulted in sufficient flexural performance. These test results show that the minimum lap splice length specified in current Korea Highway Bridge Design Code is conservative for precast deck joint using HSFRC. Therefore, splice details can be simplified and joint width can be reduced by using HSFRC with filler between the precast decks, and the proposed precast deck systems can be applied to the connection part of precast decks effectively.

Cyclic Seismic Testing of Cruciform Concrete-Filled U-Shape Steel Beam-to-H Column Composite Connections (콘크리트채움 U형합성보-H형강기둥 십자형 합성접합부의 내진성능)

  • Park, Chang-Hee;Lee, Cheol-Ho;Park, Hong-Gun;Hwang, Hyeon-Jong;Lee, Chang-Nam;Kim, Hyoung-Seop;Kim, Sung-Bae
    • Journal of Korean Society of Steel Construction
    • /
    • v.23 no.4
    • /
    • pp.503-514
    • /
    • 2011
  • In this research, the seismic connection details for two concrete-filled U-shape steel beam-to-H columns were proposed and cyclically tested under a full-scale cruciform configuration. The key connecting components included the U-shape steel section (450 and 550 mm deep for specimens A and B, respectively), a concrete floor slab with a ribbed deck (165 mm deep for both specimens), welded couplers and rebars for negative moment transfer, and shear studs for full composite action and strengthening plates. Considering the unique constructional nature of the proposed connection, the critical limit states, such as the weld fracture, anchorage failure of the welded coupler, local buckling, concrete crushing, and rebar buckling, were carefully addressed in the specimen design. The test results showed that the connection details and design methods proposed in this study can well control the critical limit states mentioned above. Especially, the proposed connection according to the strengthening strategy successfully pushed the plastic hinge to the tip of the strengthened zone, as intended in the design, and was very effective in protecting the more vulnerable beam-to-column welded joint. The maximum story drift capacities of 6.0 and 6.8% radians were achieved in specimens A and B, respectively, thus far exceeding the minimumlimit of 4% radians required of special moment frames. Low-cycle fatigue fracture across the beam bottom flange at a 6% drift level was the final failure mode of specimen A. Specimen B failed through the fracture of the top splice plate of the bolted splice at a very high drift ratio of 8.0% radian.