• Title/Summary/Keyword: Rib-Roughened Surface

Search Result 15, Processing Time 0.028 seconds

Heat transfer coefficient measurement by a jet impinging on a rib-roughened convex surface (표면조도를 가지는 볼록한 면에 충돌하는 제트에 의한 열전달계수 측정)

  • Jeong, Yeong-Seok;Lee, Dae-Hui;Lee, Jun-Sik
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.22 no.3
    • /
    • pp.373-385
    • /
    • 1998
  • The local Nusselt numbers have been measured for a round turbulent jet impinging on the convex surface with and without rib. Liquid crystal/transient method was used to determine the Nusselt number distributions along the surface. The temperature on the surface was measured to within .+-.0.25 deg. C accuracy using liquid crystal and a digital color image processing system. The experiments were made for the jet Reynolds number (Re) 23,000, the dimensionless nozzle-to-surface distance (L/d) from 6 to 10, the dimensionless surface curvature (d/D) 0.056, and the various rib types (height(d$_{1}$) from 1 to 2 mm, pitch (p) from 6 to 32 mm). It was found that the average Nusselt numbers on the convex surface with rib are higher than those without rib, mainly due to an increase in the turbulent intensity caused by flow separation, recirculation and reattachment on the wall surface. In addition, we compared the results by the steady-state method using the gold-film Intrex with those by the transient method.

Heat Transfer Measurements by a Round Impinging Jet on a Rib-Roughened Flat Plate (표면조도를 가진 평판에서 원형충돌제트에 의한 열전달 측정)

  • Lee, Dae-Hee;Kim, Yun-Taek;Chung, Seung-Hun;Chung, Young-Suk
    • Proceedings of the KSME Conference
    • /
    • 2000.11b
    • /
    • pp.87-92
    • /
    • 2000
  • This study is to investigate the heat transfer characteristics the for a round turbulent jet impinging on the flat plate with and without rib. Liquid crystal/transient method was used to determine the Nusselt number distributions along the surface. The temperature on the surface was measured using liquid crystal and a digital color image processing system. The experiments were made fur the jet Reynolds number (Re) 23,000, the dimensionless nozzle-to-surface distance (L/d) from 2 to 10, and the rib type [height ($d_1$) 2mm, pitch (p) from 12 to 36mm]. It was found that for $L/d{\ge}6$ the average Nusselt numbers on the flat plate with rib type C ($p/d_1=16$) are higher than those without rib, mainly due to an increase in the turbulent intensity caused by flow separation, recirculation and reattachment on the wall surface.

  • PDF

Heat Transfer Measurement by a Round Jet Impinging on a Rib-Roughened Concave Surface (표면조도를 가지는 오목한 면에 충돌하는 원형제트에 의한 열전달 측정)

  • Lee, Dae Hee;Won, Se Youl;Lee, Joon Sik
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.23 no.6
    • /
    • pp.734-743
    • /
    • 1999
  • The local Nusselt numbers have been measured for a round turbulent jet impinging on the concave surface with and without rib. Liquid crystal/transient method was used to determine the Nusselt number distributions along the surface. The temperature on the surface was measured using liquid crystal and a digital color image processing system. The experiments were made for the jet Reynolds number (Re) 23,000, the dimensionless nozzle-to-surface distance (L/d) from 4 to 10, the dimensionless surface curvature (d/D) 0.056, and the rib type (height ($d_1$) 0.2 cm, pitch (p) from 1.2 to 3.2 cm). It was founded that only when $L/d{\geq}6$, the average Nusselt numbers on the concave surface with rib are higher than those without rib, mainly due to an increase in the turbulent intensity caused by the effect of rib attached to the wall surface. It was realized that the rib attached to the concave surface may no longer enhance the heat transfer rate or even lowers it depending on the rib type and flow conditions. In addition, the results by the steady-state method using the gold-film Intrex were in good agreement with those by the transient shroud method.

Heat Transfer and Pressure Drop Characteristics of Triangular Ducts with One Side Rib-Roughened (한 측에서만 거칠기가 설치된 삼각덕트의 마찰계수와 열전달)

  • 안수환;이영석
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.24 no.2
    • /
    • pp.17-23
    • /
    • 2000
  • Experimental investigations were conducted to study the forced convection of fully-developed turbulent flow in horizontal equilateral duct fabricated with the same length and equivalent diameter, but different surface roughness pitch ratio(P/e) of 4, 8 and 16 on the one side wall only. The experiments were performed with the hydraulic diameter based Reynolds number ranged from 70,000 to 10,000. The entire bottom wall of the duct was heated uniformly and the other surfaces were thermally insulated. To understand the mechanisms of the heat transfer enhancement, measurements of the heat transfer were done to investigate the contributive factor of heat transfer promotion, namely, the fin effect. And the results were compared with those of previous investigations for similarly configured channels, at which they were roughened by regularly spaced transverse ribs in the rectangular and circular channels.

  • PDF

Heat Transfer and Pressure Drop Characteristics of Triangular Ducts with One Side Rib-Roughened (한 측에서만 거칠기가 설치된 삼각덕트의 열전달과 압력강하 특성)

  • Ahn, S.W.;Lee, Y.S.;Lee, B.C.
    • Proceedings of the KSME Conference
    • /
    • 2000.04b
    • /
    • pp.65-70
    • /
    • 2000
  • Experimental investigations were conducted to study the forced convection of fully-developed turbulent f)on· in horizontal equilateral duct fabricated with the same length and equivalent diameter, but different surface roughness Pitch ratio(P/e) of 4, 8 and 16 on the one side wall only The experiments were performed with the hydraulic diameter based Reynolds number ranged from 70.000 to 10,000 The entire bottom wall of the duct was heated uniformly and the other surfaces were thermally insulated. To understand the mechanisms of the heat transfer enhancement. measurements of the heat transfer were done to investigate the contributive factor of heat transfer promotion. namely the fin effect. And the results were compared with those of Previous investigations for similarly configured channels, at which they were roughened by regularly spaced transverse ribs in the rectangular and circular channels.

  • PDF

Effects of Rib Geometries on the Friction Factors and Heat Transfer in the Channel (거칠기 형상이 마찰 계수와 열전달에 미치는 영향)

  • Ahn, Soo-Whan;Son, Kang-Pil
    • Proceedings of the KSME Conference
    • /
    • 2001.11b
    • /
    • pp.241-247
    • /
    • 2001
  • A comparison of fully developed heat transfer and friction factor characteristics has been made in rectangular ducts with ones roughened by five different shapes. The effects of rib shape geometries and Reynolds number are examined. The rib height-to-duct hydraulic diameter, pitch-to-height ratio, and aspect ratio of channel width to height are fixed at e/De=0.0476, P/e=8, and W/H=2.33, respectively. To understand the mechanisms of the heat transfer enhancements, the measurements of the friction factors are also conducted in the smooth and rough channels. The data indicates that the triangular type rib has a substantially higher heat transfer performance than any other ones in the range we studied.

  • PDF

Effects of Rib Shapes on the Friction Factors and Heat Transfer in a Rectangular Duct (사각 덕트에서 거칠기 형상이 마찰계수와 열전달에 미치는 효과)

  • 안수환;손강필
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.13 no.5
    • /
    • pp.341-347
    • /
    • 2001
  • A comparison of fully developed heat transfer and friction factor characteristics has been made in rectangular ducts with ones roughened by five different shapes. The effects of rib shape geometries and Reynolds number are examined. The rib height-to-duct hydraulic diameter, pitch-to height ratio, and aspect ratio of channel width to height are fixed at $e$/De=0.0476, P/$e$=8, and W/H=2.33, respectively. To understand the mechanisms of the heat transfer enhancements, the measurements of the friction factors are also conducted in the smooth and rough channels. The data indicates that the triangular type rib has a substantially higher heat transfer performance than any other ones in the range we studied.

  • PDF

Effects of Rough Surfaces on Heat Transfer in Channel Flow (채널유동에서 거친벽면이 열전달에 미치는 효과)

  • Ahn, S.W.
    • Journal of Power System Engineering
    • /
    • v.5 no.2
    • /
    • pp.30-35
    • /
    • 2001
  • A comparison of fully developed heat transfer and friction factor characteristics has been made in rectangular ducts with one wall roughened by five different shapes. The effects of rib shape geometries and Reynolds number are examined. The rib height-to-duct hydraulic diameter, pitch-to-height ratio, and aspect ratio of channel width to height are fixed at $e/D_e=0.0476$, P/e=8, and W/H=2.33, respectively. To understand the mechanisms of the heat transfer enhancements, the measurements of the friction factors are also conducted in the smooth and rough channels. The data indicate that the triangular type rib has a substantially higher efficiency index than any other ones in the range we studied.

  • PDF

An Investigation on Friction Factors and Heat Transfer Coefficients in a Rectangular Duct with Surface Roughness

  • Ahn, Soo-Whan;Son, Kang-Pil
    • Journal of Mechanical Science and Technology
    • /
    • v.16 no.4
    • /
    • pp.549-556
    • /
    • 2002
  • An investigation on the fully developed heat transfer and friction factor characteristics has been made in rectangular ducts with one-side roughened by five different shapes. The effects of rib shape geometries as well as Reynolds numbers are examined. The rib height-to-duct hydraulic diameter, pitch-to-height ratio, and aspect ratio of channel width to height are fixed at e/De=0.0476, P/e=8, and W/H=2.33, respectively. To understand the characteristics of heat transfer enhancements, the friction factors are also measured. The data indicates that the triangular type rib has a substantially higher heat transfer performance than any other ones.

Design Optimization of Three-Dimensional Channel Roughened by Oblique Ribs Using Response Surface Method (반응면 기법을 이용한 경사진 리브가 부착된 삼차원 열전달유로의 최적설계)

  • Kim, Hong-Min;Kim, Kwang-Yong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.28 no.7
    • /
    • pp.879-886
    • /
    • 2004
  • A numerical optimization has been carried out to determine the shape of the three-dimensional channel with oblique ribs attached on both walls to enhance turbulent heat transfer. The response surface based optimization is used as an optimization technique with Reynolds-averaged Navier-Stokes analysis of fluid flow and heat transfer. Shear stress transport (SST) turbulence model is used as a turbulence closure. Numerical results fur heat transfer rate show good agreements with experimental data. four dimensionless variables such as, rib pitch-to-rib height ratio, rib height-to-channel height ratio, streamwise rib distance on opposite wall to rib pitch ratio, and the attack angle of the rib are chosen as design variables. The objective function is defined as a linear combination of heat-transfer and friction-loss related coefficients with a weighting factor. D-optimal method is used to determine the training points as a means of design of experiment. Sensitivity of the objective parameters to each design variable has been analyzed. And, optimal values of the design variables have been obtained in a range of the weighting factor.