• Title/Summary/Keyword: Rib Plate

Search Result 147, Processing Time 0.025 seconds

Buckling Analysis of Laminated Composite Plates Longitudinally Stiffened with U-Shaped Ribs (축방향 압축을 받는 폐단면리브로 보강된 복합적층판의 좌굴 해석연구)

  • Choi, Byung-Ho;Choi, Su-Young;Park, Sang-Kyun
    • Journal of the Korean Society for Advanced Composite Structures
    • /
    • v.3 no.1
    • /
    • pp.29-34
    • /
    • 2012
  • Even though the longitudinally stiffened laminated composite plates with closed section ribs should be an effective system for axially compressed members, the existing researches on the applications of closed-section ribs, especially for the laminated composite plates, are not sufficient. This study is aimed to examine the influence of the sectional stiffness of U-shaped ribs on the buckling modes and strengths of laminated composite plates. Applying the orthotropic plates with eight layers of the layup $[(0^{\circ})_4]_s$ and $[(0^{\circ}/90^{\circ})_2]_s$, 3-dimensional finite element models for the U-rib stiffened plates were setup by using ABAQUS and then a series of eigenvalue analyses were conducted. From the parametric studies, the minimum required ply thicknesses as well as the buckling strengths were presented for the analysis models. The buckling strengths were compared with the theoretical critical stress equation for simply supported plates based on the Classical laminated plate theory. This study will contribute to the future study for evaluating the minimum required stiffness and optimum design of U-rib stiffened plates.

Formulating the Local Displacement and Local Moments of a Plate Stiffened with Open Ribs According to the Dimensions of Stiffened Plates (보강판 제원에 따른 개단면 리브 보강판의 국부 처짐과 국부 모멘트의 정형화)

  • Chu, Seok Beom
    • Journal of Korean Society of Steel Construction
    • /
    • v.24 no.6
    • /
    • pp.659-670
    • /
    • 2012
  • The purpose of this study is to formulate the local displacement and moments of a plate stiffened with open ribs according to the dimensions of stiffened plates. Analyzed results of various plates stiffened with rectangular and reverse T ribs show that the effect of the lower flange to the local behavior is very small, so the local behavior can be expressed by ratio functions of the rib space, web thickness, web height and plate thickness and the ratio functions of rectangular and reverse T ribs can be unioned. The application of ratio functions to other types of stiffened plates shows that the increment of the error ratio is so small compared with examples of this study that the applicability of this study is proved.

A Design of the Cooling Channel in the Bipolar Plate of PEMFC Using Experimental Design Method (실험설계법을 이용한 연료전지 분리판 냉각채널 설계)

  • Zhang, Xia;Kwon, Oh-Jung;Oh, Byeong Soo
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.23 no.5
    • /
    • pp.545-552
    • /
    • 2015
  • The heat generation in PEMFC is proportional to the electrical power output. Therefore, when the fuel cell produced the maximum output, the maximum heat was generated. In order to maintain the performance of the fuel cell, thermal management is as important as pressure and humidity conditions of the reactive gas. In this study, considering the thermal management for the maximum output operation, the optimal cooling channel design specifications of bipolar plate are found for the highest cooling performance. In the current bipolar plate research, many studies focused on analyzing various factors individually but there is no more study on the interaction between design factors. In this study, the heat transfer was simulated by COMSOL Multiphysics with the main design factors which are designated shape, width and rib length. One of the experimental design methods, general full factorial design method, was used to analyze the main factor and interaction on average temperature and maximum temperature for the design specification of fuel cell bipolar plate. When analysis result shows that all of these three factors are highly important, it can confirm that the interaction occurs between the factors.

Analytical Studies on the Steel Plate-Concrete Structures under Compressive Load (압축력을 받는 강판-콘크리트 구조의 해석적 고찰)

  • Choi, Byong Jeong;Han, Hong Soo
    • Journal of Korean Society of Steel Construction
    • /
    • v.20 no.2
    • /
    • pp.269-278
    • /
    • 2008
  • The primary object of the paper is to understand the compressive buckling characteristics of steel-concrete structures through the finite element analysis. The buckling pattern, compressive strength and stiffness of the steel plate concrete structures were investigated by the FEM analysis using the variations of B/t ratios and stud pitches. The investigation was focused on steel plate concrete structures with and without ribs placed on the surface of steel plates. The results of the FEM analysis were compared with the previous results from the theoretical equations. Conclusively, the buckling of the steel plate concrete structures occurred in the transverse direction of the loading direction. The stiffness of the steel plate concrete structure with ribs is greater than the one without the stiffened rib. The compressive strength in the FEM analysis is similar to that of JEAG 4681 and it showed 20% greater value than that of the proposed equations.

Evaluation of Static Behaviour of Orthotropic Steel Deck Considering the Loading Patterns (하중재하 패턴을 고려한 강바닥판의 정적거동 평가)

  • Kim, Seok Tae;Huh, Young
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.15 no.2
    • /
    • pp.98-106
    • /
    • 2011
  • The deck of steel box girder bridges is composed of deck plate, longitudinal rib, and transverse ribs. The orthotropic steel decks have high possibility to fatigue damage due to numbers of welded connection part, the heavy contact loadings, and the increase of repeated loadings. Generally, the local stress by the repeated loadings of heavy vehicles causes the orthotropic steel deck bridge to fatigue cracks. The increase of traffic volume and heavy vehicle loadings are promoted the possibility of fatigue cracks. Thus, it is important to exactly evaluate the structural behavior of bridge considering the contact loading area of heavy vehicles and real load patterns of heavy trucks which have effects on the bridge. This study estimated the effect of contact area of design loads and real traffic vehicles through the finite element analysis considering the real loading conditions. The finite element analysis carried out 4 cases of loading patterns in the orthotropic steel deck bridge. Also, analysis estimated the influence of contact area of real truck loadings by the existence of diaphragm plate. The result of finite element analysis indicated that single tire loadings of real trucks occurred higher local stress than one of design loadings, and especially the deck plate got the most influence by the single tire loading. It was found that the diaphragm attachment at joint part of longitudinal ribs and transverse ribs had no effects on the improvement of structural performance against fatigue resistance in elastic analysis.

An Experimental Study on the Seismic Performance of Shear Connections and Rib Plate H Beam to Column Connections (전단접합 및 리브 플레이트로 보강한 H형 보-기둥 접합부의 내진성능에 관한 실험적 연구)

  • Oh, Kyung Hyun;Seo, Seong Yeon;Kim, Sung Yong;Yang, Young Sung;Kim, Kyu Suk
    • Journal of Korean Society of Steel Construction
    • /
    • v.17 no.5 s.78
    • /
    • pp.569-580
    • /
    • 2005
  • The postbeam joint connection of the existing steel structure moment flexible frame system did not produce sufficient seismic resistance during the earthquakes in Northridge and Kobe, and it sustained brittle fracturing on the joint connection. This study was performed to execute the high-tensile bolt share connection of H-beams web and the full-scale experiment as a parameter of the existing reinforcement of H-flange rib, by making the shape of the existing joint connection. This experiment was performed to determine the extent of the decrease of the number of high-tensile bolts and how to improve workability of the two-phase shear connection of web beam. In addition, this study was performed to enhance the seismic resistant capacity through the enforcement of rib plates. As a result of the experiment of two-phase shear connection of H-beam web and of joint connection to be reinforced by rib plates, the results of this study showed that the initial stiffness, energy-dissipation capacity, and rotational capacity of plasticity was higher than the existing joint connection. As to the rate of increasing the strength and deformation capacity, there were differences between the tension side and compression side because of the position of shear tap. However, as a whole, they have shown excellent seismic resistant capacity. Also, all the test subjects exceeded 4% (rate of delamination), about 0.029 rad (total plastic capacity), and about 130% (maximum strength of joint connection) of fully plastic moment for the original section. Accordingly, this study was considered as it would be available in the design more than the intermediate-level of moment flexible frame.

An Experimental Study on the Flexural Behavior for the Slabs using the Suspending Deck plate (매닮 데크플레이트를 이용한 슬래브의 휨거동에 관한 연구)

  • Bae, Kyu Woong;Lee, Sang Sup;Park, Keum Sung
    • Journal of Korean Society of Steel Construction
    • /
    • v.25 no.1
    • /
    • pp.25-34
    • /
    • 2013
  • The purpose of the this paper is experimentally to investigate flexural behavior of slabs with suspending the deck plate. The main experimental parameters are the depth and thickness of the deck plate, slab span, rebar and support conditions. Total number of six specimens were tested and manufactured in slabs under vertical load. Based on the results of the test, the flexural behavior for slabs is determined according to the vertical deformation of the slabs, regardless of the main experimental parameters. Bending rebar reinforcement in the rib cross-section specimens can be evaluated significantly higher initial stiffness, crack stiffness and flexural strength. Result of the comparison of the theory value appeared to be fairly well matched to average 1.05.

Behavior of Shear Yielding Thin Steel Plate Wall with Tib (리브로 보강한 전단 항복형 강판벽의 거동)

  • Yun, Myung Ho;Wi, Ji Eun;Lee, Myung Ho;Oh, Sang Hoon;Moon, Tae Sup
    • Journal of Korean Society of Steel Construction
    • /
    • v.13 no.5
    • /
    • pp.503-511
    • /
    • 2001
  • Structures are designed against earthquakes and reinforced concrete shear walls or steel bracings are usually used as aseismic resistant element. However their hysteretic characteristics in plastic region ductility and capacity of energy absorption are not always good. Besides their stiffness is so rigid that structure designed by static analysis is occasionally disadvantageous. when dynamically analized. Generally a steel plate subjected to shear force has a good deformation capacity Also it has been considered to retain comparative shear strength and stiffness Steel shear wall can be used as lateral load resistant element for seismic design. However there was little knowledge concerning shear force-deformation characteristics of steel plates up to their collapse state In this study a series of shear loading tests of steel plate collapse state. In this study a series of shear loading tests of steel plate surrounded by vertical and horizontal ribs were conducted with the parameters of D/H ratios rib type and the loading patterns. The test result is discussed and analyzed to obtain several restoring characteristics. that is shear force-deformation stiffness and yield strength etc.

  • PDF

A Study on the Structural Behavior of the Composite Slabs Using the New Shaped Deck Plate (신형상의 데크플레이트를 이용한 합성슬래브의 구조적 거동에 관한 연구)

  • Kim, Chang Woo;Choi, Sung Mo;Kang, Do An;Kim, Dong Kyu
    • Journal of Korean Society of Steel Construction
    • /
    • v.9 no.4 s.33
    • /
    • pp.589-600
    • /
    • 1997
  • Cold-formed deck sections are used in many composite floor slab applications wherein the steel deck serves not only as the form for the concrete during construction but also as the principal tensile reinforcement for the bottom fiber of the composite slab. This paper provides the results of an experimental study performed for the composite slabs with the new shaped deck plates with the locking ribs, the dove tails, and the powerful embossment, which are the mechanical means to improve positive interlocking effect between the deck and the concrete. A total of 28 specimens are tested to investigate the composite effects between the concrete and metal deck plate. Important parameters in this are the span length, the thickness of the deck plate, support condition, and whether shear studs are placed at each support or not. The test results are summarized for the maximum load and failure behavior for the specimens.

  • PDF

Weight Reducing of Aluminum Extrusion Profiles of a Railway-Car Body Based on Topology and Size Optimization (알루미늄 압출재로 이루어진 철도차량 차체의 경량화를 위한 최적설계 방안 연구)

  • Han, Soon-Woo;Jung, Hyun-Seung
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.35 no.2
    • /
    • pp.213-221
    • /
    • 2011
  • In this study, we discussed the weight reducing of a urban railway-car body, in particular, of the Korean EMU, by optimizing topology and size of aluminum extrusion profiles. The heaviest parts of aluminum railway-car bodies, i.e., the base plate of underframe and side panels of side frame composed of double skin structures are considered for optimization. Topology optimization process is applied to obtain get an optimized rib structure for the base plate. The thickness of ribs and plates of the topologically optimized base plate and the existing side panel are also optimized by employing the size optimization process. The results are verified by comparing the maximum von Mises stresses and maximum deformation in the case of the existing design with those in the case of the optimized design. It is shown that the weight of a base plate and side panel can be reduced by 12% and that the weight of the whole car body can be reduced by 8.5%.