• 제목/요약/키워드: Rhodococcus rhodochrous

검색결과 18건 처리시간 0.024초

Fed-batch Fermentation for Production of Nitrile Hydratase by Rhodococcus rhodochrous M33

  • Kim, Bu-Youn;Kim, Jong-Chul;Lee, Hyune-Hwan;Hyun, Hyung-Hwan
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • 제6권1호
    • /
    • pp.11-17
    • /
    • 2001
  • To enhance the productivity and activity of nitrile hydratase in Rhodococcus rhodochrous M33, a glucose-limited fed-batch culture was performed. In a fed-batch culture where the glucose was controlled at a limited level and cobalt was supplemented during the fermentation period, the cell mass and total activity of nitrile hydratase both increased 3.3-fold compared to that in the batch fermentation. The productivity of nitrile hydratase also increased 1.9-fold compared to that in the batch fermentation. The specific activity of nitrile hydratase in the whole cell preparation when using a fed-batch culture was 120 units/mg-DCW, which was similar to that in the batch culture.

  • PDF

Catechol 1,2-Dioxygenase from Rhodococcus rhodochrous N75 Capable of Metabolizing Alkyl-Substituted Catechols

  • Cha Chang-Jun
    • Journal of Microbiology and Biotechnology
    • /
    • 제16권5호
    • /
    • pp.778-785
    • /
    • 2006
  • Catechol 1,2-dioxygenase was purified from cells of R. rhodochrous N75 grown at the expense of benzoate and p-toluate as the sole sources of carbon. A single catechol 1,2-dioxygenase was found to be induced with either growth substrate. The enzyme has an estimated $M_r$ of 71,000 consisting of two identical subunits. Catechol 1,2-dioxygenase from R. rhodochrous N75 exhibits some unusual properties including: broad substrate specificity, extradiol cleavage activity with 4-methylcatechol and low $K_m$ values for halocatechols, suggesting that this enzyme is distinct from other known catechol and chlorocatechol 1,2-dioxygenases.

Isolation and Purification of Methyl Mercaptan Oxidase from Rhodococcus rhodochrous for Mercaptan Detection

  • Kim, Sang-Joon;Shin, Hyun-Jae;Kim, Yeu-Chun;Lee, Dae-Sil;Yang, Ji-Won
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • 제5권6호
    • /
    • pp.465-468
    • /
    • 2000
  • Methyl mercaptan oxidase was successfully induced from Rhodococcus rhodochrous IGTS8 using methyl mercaptan gas and purified to homogeneity for the detection of mercaptans. The purification procedure involved DEAE-Sephacel and Superose 12 column chromatography with recovery yields of 85.8 and 83.3%, and a specific activity of 92.7 and 303.4 units/mg-protein, respectively. The molecular weight of purified methyl mercaptan oxidase was determined to be 64.5 kDa by SDS-PAGE. The extract from gel filtration chromatography oxidizes methyl mercaptan to produce formaldehyde, which can be easily detected by the purpald-coloring method. Optimum temperature for activity was achieved at 60$^{\circ}C$. This enzyme was inhibited by both K$_2$SO$_4$and NaCl at concentration of less than 100mM and recovered to original activity at concentration of 200mM. In the presence of methanol, the activity decreased by 33%.

  • PDF

High oil phase에서 Rhodococcus rhodochrous IGTS8의 Dibenzothiophene 분해능 향상을 위한 조건 조사

  • 최윤규;박홍우
    • 한국생물공학회:학술대회논문집
    • /
    • 한국생물공학회 2000년도 추계학술발표대회 및 bio-venture fair
    • /
    • pp.540-543
    • /
    • 2000
  • 본연구에서는 Rhodococcus rhodochrous IGTS8 균주를 사용하여 고농도의 유상에서 탈황효율을 높이기 위한 오일 함유비, pH, 영양물질의 영향을 조사하였다. 오일 함유비에 의한 영향은 유상이 30%이하일 경우 그리 크지 않았으며, pH 조절에 의해 50%, 영양물질의 강화에 의해 32%의 탈황효율이 증가했다. 강화배지에서 pH를 조절하며 배양한 결과, 기존의 배양에 비해 136% 탈황효율이 증가했다.

  • PDF

Investigation of gene encoding catechol 1,2-dioxygenase from Phenol-degrading, Rhodococcus sp. EL-GT

  • 이희정;한창민;조순자;박근태;박재림;이상준
    • 한국생물공학회:학술대회논문집
    • /
    • 한국생물공학회 2001년도 추계학술발표대회
    • /
    • pp.549-551
    • /
    • 2001
  • 본 연구는 방향족 화합물질 중 페놀폐수에 대한 생물학적 처리를 위해 본 실험실에서 분리한 페놀분해능이 우수한 Rhodococcus sp. EL-GT를 이용하여 catechol 분해 catechol 1,2-dioxygenase 분해활성을 측정하였고, 이것이 ortho-pathway임을 확인할 수 있었다. 또한 다른 연구에서 보고되 Phodococcus rhodochrous NCIMB임을 확인할 수 있었다. 또한 다른 연구에서 보고된 Rhodococcus rhodochrous NCIMB 13259 균주의 catechol 1,2 dioxygenase를 기초로한 primer를 이용하여 PCR을 수행하였으며 이 분해 유전자의 cloning실험을 수행 중이다. 이들 실험을 통하여 Rhodococcus sp. EL-GT의 페놀분해 균의 유전적 구조 및 특징을 검토하고 이를 이용하여 방향족 화합물의 분해능이 보다 우수한 균주의 개발을 시도하고자 한다.

  • PDF

Production of Acrylamide Using Immobilized Cells of Rhodococcus rhodochrous M33

  • Kim, Bu-Youn;Hyun, Hyung-Hwan
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • 제7권4호
    • /
    • pp.194-200
    • /
    • 2002
  • The cells of Rhodococcus rhodochrous M33, which produce a nitrile hydratase enzyme, were immobilized in acrylamide-based polymer gels. The optimum pH and temperature for the activity of nitrile hydratase in both the free and Immobilized cells were 7.4 and 45$\^{C}$, respectively, yet the optimum temperature for acrylamide production by the immobilized cells was 20$\^{C}$. The nitrile hydratase of the immobilized cells was more stable with acrylamide than that of the free cells. Under optimal conditions, the final acrylamide concentration reached about 400 g/L with a conversion yield of almost 100% after 8 h of reaction when using 150 g/L of immobilized cells corresponding to a 1.91 g-dry cell weight/L. The enzyme activity of the immobilized cells rapidly de-creased with repeated use. However, the quality of the acrylamide produced by the immobilized cells was much better than that produced by the free cells in terms of color, salt content, turbidity, and foam formation. The quality of the aqueous acrylamide solution obtained was found to be of commercial use without further purification.

Construction of a Biofilter Immobilized with Rhodococcus sp. B261 for Removal of H2S Gas Generated by Livestock

  • Yun, Soon-Il
    • Journal of Applied Biological Chemistry
    • /
    • 제51권6호
    • /
    • pp.307-314
    • /
    • 2008
  • To explore the optimal conditions for the removal of $H_{2}S$ gas by biofiltration, various conditions, including inlet $H_{2}S$ concentration, flow rate, moisture, and cell number, were examined. Heterotrophic bacteria were isolated from the compost of the animal excreta. A strain that effectively removed $H_{2}S$ was selected and identified as Rhodococcus rhodochrous B261 by analysis of its 16S rDNA sequence. A cell number of $10^{7}\;cfu/g^{-}compost$ was sufficient to dominate the microbiota, and an effective removal was observed at $H_{2}S$ gas concentrations below 220 mg/L. The moisture content of 33-38% was suitable for activation of the microbial activity and delaying the desiccation. Higher flow rates resulted in lower removal rates of the $H_{2}S$ gas. Under the conditions of $10^7\;cfu/g^{-}compost$, $H_{2}S$ gas concentrations of 220 mg/L, and moisture content of 33-38%, the inlet $H_{2}S$ gas concentrations of 120 and 400 mg/L were completely removed for 34 and 12 days, respectively. The amount of sulfur removed was $2.99{\times}10^{-9}H_{2}S-S/cell$, which was suggested as the amount of sulfur removed by a single cell. The biofilter consisting of the compost and R. rhodochrous B261 could be suitable for a long-term biofilteration for the removal of $H_{2}S$ and other malodorous compounds.

높은 유상비에서 Rhodococcus rhodochrous IGTS8를 이용한 탈황효율의 분석과 5-L 배양기에의 적용

  • 김진홍;박홍우
    • 한국생물공학회:학술대회논문집
    • /
    • 한국생물공학회 2002년도 생물공학의 동향 (X)
    • /
    • pp.121-125
    • /
    • 2002
  • Rhodococcus rhodochrous IGTSS (ATCC 5396S) can break organo sulfur compounds such as dibenzothiophene. Since the environment for biodesulfurization process is invariably hydrophobic, parameters in hydrophobic systems should be examined. For the model oil, hexadecane-containing 5.43mM dibenzothiophene, the volumetric desulfurization rate was decreased with the oil-to-aqueous phase ratio up to 50%. The rate declined sharply after 48h because the cell activity, which is refreshed by medium exchange, was lost. To supply the exhausted nutrients, medium exchange was performed. At 30% oil phase, most of DBT was removed by medium exchange on 48h, and the rate was 2.03mg $DBT_{removed}/L_{dispersion}-hr.$ At 50% oil phase, medium exchange on 60h was performed and the rate was 1.79mg $DBT_{removed}/L_{dispersion}-hr.$ The 300mL flask system was scaled up to a 5-L bioreactor system. On 60 h, a medium exchange was performed and the rate was 5.28mg $DBT_{removed}/L_{dispersion}-hr.$ and all of DBT was removed. It means that we can use the biodesulfurization process even 10 the high oil-to-water phase by some appropriate methods such as controlled feeding of key nutrients and the dilution or removal of some toxic metabolites by continuous reactor.

  • PDF

Characterization and refinement of enzyme of the gene encoding catechol 1,2-dioxygenase from Phenol-degrading, Rhodococcus sp.

  • 이희정;박근태;박재림;이상준
    • 한국환경과학회:학술대회논문집
    • /
    • 한국환경과학회 2002년도 봄 학술발표대회 발표논문집
    • /
    • pp.209-212
    • /
    • 2002
  • 본 연구는 방향족 화합물질 중 페놀폐수에 대한 생물학적 처리를 위해 본 실험실에서 분리한 페놀분해능이 우수한 Rhodococrus sp. EL-GT를 이용하여 catechol 분해 catechol 1,2-dioxygenase 분해활성을 측정하였고, 이것이 ortho-pathway임을 확인할 수 있었다. 또한 다른 연구에서 보고된 Rhodococcus rhodochrous NCIMB 13259 균주의 catechol 1,2 dioxygenase를 기초로한 primer를 이용하여 PCR을 수행하였으며 이 분해 유전자의 cloning실험을 수행 중이다. 이들 실험을 통하여 Rhodococcus sp.의 페놀분해균의 유전적 구조 및 특성을 검토하고 밝혀지는 단백질 정보를 이용하여 방향족 화합물의 분해능이 보다 우수한 균주의 개발을 시도하고자 한다.

  • PDF