• Title/Summary/Keyword: Rhodamine dyes

Search Result 50, Processing Time 0.023 seconds

Study on the Detection of Artificial Dyes in the Commercial Drops by Use of Thin-Layer Chromatography (Thin-Layer Chromatography에 의한 시판 알사탕류의 착색료에 관한 고찰)

  • 구성회;우세홍;한식일;이성호
    • Journal of Environmental Health Sciences
    • /
    • v.1 no.1
    • /
    • pp.14-17
    • /
    • 1974
  • A study was carried out to detect of illegal artificial dyes, and to confirm the used rate of illegal dyes in the production process of commercial drops (candy), from Dec. 10, 1972 to Feb. 10, 1973. In this study, it was used thin layer chromatography, the samples were divided into two groups, group A of inscribed trade name and group B of not inscribed trade name. To contrast with group A and group B, 100 samples were randomly collected in the market places, 50 samples from group A and 50 samples from group B. The following conclusions were obtained: 1) used rate of illegal dyes were 2% of group A and 9% of group B. 2) used rate of illegal dyes were 2% of red, 2% of yellow, 1% of violet and 6% of green, not in blue. 3) used rate of illegal dyes 3% of Rhodamine B, 3% of Auramine and 6% of Light green S.F. Yellowish. 4) Out of 20 cases those used mixed dyes, only one case was confirmed as two illegal dyes, and 4 cases were used one illegal dye.

  • PDF

Decolorization of Rhodamine B Using UV/$TiO_2$ System (UV/$TiO_2$ 시스템을 이용한 Rhodamine B의 색도 제거)

  • 박영식;나영수;안갑환
    • Journal of Environmental Health Sciences
    • /
    • v.28 no.5
    • /
    • pp.59-64
    • /
    • 2002
  • The photocatalytic decolorization of the Rhodamine B (RhB) was studied using a UV/TiO$_2$ reactor. Yakuri titanium dioxide(anatase) was used as the suspended photocatalyst and proved to be effective for decolorization irradiated with UV light (254 mm). The photocatalyzed dioxide concentrations, light intensity and air flow rates. In 0.01 mM RhB, color could be completely photodegraded after 3 hours. Absorption spectrum of an aqueous solution containing RhB showed a continued diminution of the RhB concentration in the solution bulk : concomitantly, no new absorption peaks appeared. This confirmed the decolorization of RhB, i.e., the break up of the chromopore. The optimum loaded titanium dioxide for the decolorization was 0.75 g/(equation omitted). The light intensity showed exponential decay with distance. The decay of light intensity of RhB solution showed different tendency from TiO$_2$. These results suggested that the photocatalytic decolorization of dyes may be available method for decolorizing in wastewater.

Efficient Cyclization of Substituted Diphenols : Application to the Synthesis of Sulforhodamine B (치환 다이페놀의 효율적 고리화 반응: 설퍼로다민B의 합성에의 응용)

  • Park, Min Kyun;Shim, Jae Jin;Ra, Choon Sup
    • Clean Technology
    • /
    • v.21 no.2
    • /
    • pp.102-107
    • /
    • 2015
  • Rhodamine dyes are widely used as fluorescent probes because of their excellent photophysical properties, such as high extinction coefficients, excellent quantum yields, great photostability, relatively long emission wavelengths. A great synthetic effort has been focused on developing efficient and practical procedures to prepare rhodamine derivatives, because for most applications the probe must be covalently linked to another (bio)molecule or surface. Sulforhodamine B is one of the most used rhodamine dyes for this purpose, because it carries two sulfoxy functions which can be easily utilized for binding with other molecules. Recently, we needed an expedient, practical synthesis of sulforhodamine derivatives. We found the existing procedure for obtaining those compounds unsatisfactory, particularly, with the cyclization process of the dihydroxytriarylmethane (1) to produce the corresponding xanthene derivative (2). We report here our findings, which represent modification of the existing literature procedure and provide access to the corresponding xanthene derivative (2) in a high yield. Use of methanol as a co-solvent was found quite effective to prohibit the water molecule produced during the cyclization reaction from retro-cyclizing back to the starting dihydroxytriarylmethane and the yield of the cyclization was increased (up to 84% from less than 20%). The reaction temperature was significantly lowered (80 vs. 135 ℃). Thus, the reaction proceeds in a higher yield and energy-saving manner where the use of reactants and the production of chemical wastes is minimized.

Selection of Adsorption Model and Parameters for Basic Dyes from Aqueous Solution onto Pearl Layer (수용액중의 진주층에 대한 염기성 염료의 흡착매개변수 및 흡착모델 선정)

  • Shin Choon-Hwan;Song Dong-lk
    • Journal of Environmental Science International
    • /
    • v.14 no.12
    • /
    • pp.1203-1209
    • /
    • 2005
  • Basic dyes, Rhodamine 6G(R6G), Rhodamine B(RB), and Methylene Blue(MB), dissolved in water were used to investigate single-component adsorption affinity to the pearl layer fractionated according to the size. Unfractionated pearl layers were also used as adsorbents for the R6G and RB. The Langmuir and the Redlich-Peterson(RP) models were used to fit the adsorption data, and the goodness of fit was examined by using determination coefficient($R^2$) and standard deviation(SSE). The 3-parameter RP model was found to be better in describing the dye adsorption data than the 2 parameter Langmuir model, as can be expected from the number of parameters involved in the model. The adsorption affinity to the fractionated pearl layer was higher than that to the unfractionated layer The affinity order to the fractionated Conchiolin layer was found to be R6G > MB > RB. Furthermore, the dye adsorption capacity of the various types of pearl layer was found to be in the order, the fractionated pearl > powdered pearl > unfractionated pearl, exhibiting different adsorption isotherms according to the types of layer used in the study.

Graphene/BaCrO4 Nanocomposites Catalyzed Photodegradation and Kinetics Study of Organic Dyes

  • Kim, Keun Hyung;Ko, Weon Bae
    • Elastomers and Composites
    • /
    • v.50 no.1
    • /
    • pp.7-12
    • /
    • 2015
  • The $BaCrO_4$ nanoparticles were synthesized from a 0.1 M $K_2CrO_4$ and 0.1 M $BaCO_3$ solution with stirring for 10 h. The product was washed several times with acetone and heated to $700^{\circ}C$ for 6 h. At that time, the color of mixture was a greenish yellow. The graphene/$BaCrO_4$ nanocomposites were prepared with graphene and $BaCrO_4$ nanoparticles by stirring in tetrahydrofuran and heated in an electric furnace at $700^{\circ}C$ for 2 h. The $BaCrO_4$ nanoparticles, graphene/$BaCrO_4$ and heated graphene/$BaCrO_4$ nanocomposites were characterized by X-ray diffraction, scanning electron microscopy and transmission electron microscopy. The graphene/$BaCrO_4$ nanocomposites and heated graphene/$BaCrO_4$ nanocomposites were evaluated as a photocatalyst and discussed about kinetics study for the degradation of organic dyes, such as methylene blue and rhodamine B under ultraviolet light irradiation at 254 nm.

Direct Synthesis of Au/TiO2/graphene Composites and Their Application for Degradation of Various Organic Dyes (그래파이트로부터 직접 제조한 Au/TiO2/그래핀 복합체와 이를 이용한 염료의 광분해에 관한 연구)

  • Jeong, Gyoung Hwa;Kim, Sang-Wook
    • Applied Chemistry for Engineering
    • /
    • v.31 no.6
    • /
    • pp.607-611
    • /
    • 2020
  • In this research, we synthesized Au/TiO2/graphene composites using ionic surfactants for the exfoliation of graphite layers, directly. In the graphene composite, TiO2 with thin nanosheet shapes was distributed on the graphene surface and Au nanoparticles with less than 10 nm sizes were evenly distributed on the surface of the TiO2 nanosheets. The Au/TiO2/graphene composite was then applied to the photodegradation of various dyes such as methylene blue, methylene orange and rhodamine 6G, and B. Among them, the methylene blue showed the most excellent photodegradation activity (91.6%) while the rhodamine B exhibited 31.0%.

Adsorption and Photocatalytic Degradation of Dyes Using Synthesized Metal-Organic Framework NH2-MIL-101(Fe) (합성 금속-유기 골격체 NH2-MIL-101(Fe)를 이용한 염료의 흡착 및 광분해 제거)

  • Lee, Joon Yeob;Choi, Jeong-Hak
    • Journal of Environmental Science International
    • /
    • v.27 no.7
    • /
    • pp.611-620
    • /
    • 2018
  • In this study, a metal-organic framework (MOF) material $NH_2$-MIL-101(Fe) was synthesized using the solvothermal method, and characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), UV-visible spectrophotometry, field-emission scanning electron microscopy (FE-SEM), energy dispersive X-ray spectroscopy (EDS), transmission electron microscopy (TEM), and surface area measurements. The XRD pattern of the synthesized $NH_2$-MIL-101(Fe) was similar to the previously reported patterns of MIL-101 type materials, which indicated the successful synthesis of $NH_2$-MIL-101(Fe). The FT-IR spectrum showed the molecular structure and functional groups of the synthesized $NH_2$-MIL-101(Fe). The UV-visible absorbance spectrum indicated that the synthesized material could be activated as a photocatalyst under visible light irradiation. FE-SEM and TEM images showed the formation of hexagonal microspindle structures in the synthesized $NH_2$-MIL-101(Fe). Furthermore, the EDS spectrum indicated that the synthesized material consisted of Fe, N, O, and C elements. The synthesized $NH_2$-MIL-101(Fe) was then employed as an adsorbent and photocatalyst for the removal of Indigo carmine and Rhodamine B from aqueous solutions. The initial 30 min of adsorption for Indigo carmine and Rhodamine B without light irradiation achieved removal efficiencies of 83.6% and 70.7%, respectively. The removal efficiencies thereafter gradually increased with visible light irradiation for 180 min, and the overall removal efficiencies for Indigo carmine and Rhodamine B were 94.2% and 83.5%, respectively. These results indicate that the synthesized MOF material can be effectively applied as an adsorbent and photocatalyst for the removal of dyes.

Photocurrent and Its Stability Enhancement of Dye-sensitized Nanoparticle $TiO_2$ Solar Cells (염료감응 나노입자 $TiO_2$ 태양전지의 광전류와 그 안정성 향상)

  • Chae Won-Weok;Kang Tae-Sik;Kim Kang-Jin
    • Journal of the Korean Electrochemical Society
    • /
    • v.2 no.4
    • /
    • pp.232-236
    • /
    • 1999
  • A solar cell based on dye-sensitized photoelectric conversion was studied by electrochemical and spec-trofluorometric methods for the purposes of enhancing its efficiency and stability of $TiO_2$ solar cells. Nanocrystalline $TiO_2$ was used to prepare photoelectrodes, and photosensitizing dyes such as malachite green oxalate, basic blue3, rhodamine B, and bromocresol purple were chosen as sensitizers. Electrochemical oxidation potentials and absorption and emission wavelengths of dyes were used to determine energy levels of the dyes. By comparing excited energy levels of the dyes with the conduction band edge potential $(E_{c,s})\;of\;TiO_2$ calculated by using the flat-band potential $(E_{fb})\;of\;TiO_2$, properties of a dye required to fabricate a high efficient photosensitizing solar cell with high short-circuit current $(J_{sc})$ were suggested. Enhanced stability of photocurrent was obtained by coating a $TiO_2|ITO$ electrode with Polypyrrole that Possibly Prevented the recombination between the conduction band electrons and oxidized dyes and suppressed the direct electrode redox reactions of dyes on ITO.

Photoelectrocatalytic Degradation of Dyes in Aqueous Solution Using CNT/TiO2 Electrode

  • Zhang, Feng-Jun;Liu, Jin;Chen, Ming-Liang;Oh, Won-Chun
    • Journal of the Korean Ceramic Society
    • /
    • v.46 no.3
    • /
    • pp.263-270
    • /
    • 2009
  • The effect of photoelectrocatalytic (PEC) degradation for different dyes with the CNT/$TiO_2$ electrode was studied. The prepared electrode was characterized with surface properties, structural crystallinity, elemental identification, and PEC activity. The $N_2$ adsorption data showed that the composites had decreased surface area compared with the pristine CNT. This indicated the blocking of micropores on the surface of CNT, which was further supported by observation via FESEM. XRD patterns of the composites showed that the CNT/$TiO_2$ composite contained a mixing anatase and rutile phase. EDX spectra showed the presence of C, O and Ti peaks for all samples. The decomposition efifciency of the prepared electrode was evaluated by the PEC degradation of three dyes (methylene blue (MB), rhodamine B (RH.B), methyl orange (MO)). The variations of the FT-IR spectra and pH value of dye solutions were measured during the PEC system; it was found that the CNT/$TiO_2$ electrode has better PEC degradation for MB solution than that of RH.B and MO. The proposed degradation mechanism was present.

Photodecomposition of Different Organic Dyes Using Fe-CNT/TiO2 Composites under UV and Visible Light

  • Zhang, Kan;Meng, Ze-Da;Oh, Won-Chun
    • Journal of the Korean Ceramic Society
    • /
    • v.47 no.2
    • /
    • pp.169-176
    • /
    • 2010
  • The Fe-treated CNT/$TiO_2$ photocatalysts mixed with anatase and rutile phase have been developed for the decomposition of non-biodegradable different organic dyes like methylene blue (MB), rhodamine B (Rh.B), and methyl orange (MO) in two conditions as ultraviolet and visible light respectively. The results indicate that all the Fe-CNT/$TiO_2$ composites proved to be more efficient photocatalysts since degradation of MB at higher reaction rates, tthe decomposition rate of different dyes increases with an increase of $Fe^{3+}$ concentration in composites the highest rate of decomposition of different dyes was noted under UV irradiation. These results can indicate that the large CNT network is facilitate the electron transfer and strongly adsorb dye molecules on the texted photocatalysts, iron is reactive in the photo-Fenton process resulting in high production of OH radicals and also high activity of the photocatalyst. And Fe particles can generate more photoinduced electrons to conduction band of $TiO_2$ under visible light irradiation. The composites of Fe-CNT/$TiO_2$ photocatalysts synthesized by a sol-gel method were characterized by BET, TEM, SEM, XRD and EDX.