• 제목/요약/키워드: Rhodamine dyes

검색결과 50건 처리시간 0.028초

Gold Nanoparticle-Based Detection of Hg(II) in an Aqueous Solution: Fluorescence Quenching and Surface-Enhanced Raman Scattering Study

  • Ganbold, Erdene-Ochir;Park, Jin-Ho;Ock, Kwang-Su;Joo, Sang-Woo
    • Bulletin of the Korean Chemical Society
    • /
    • 제32권2호
    • /
    • pp.519-523
    • /
    • 2011
  • We studied the detection of the Hg(II) concentration in an aqueous solution using rhodamine dyes on citrate-reduced Au nanoparticles (NPs). The quenching effect from Au NPs was found to decrease as the Hg(II) concentration increased under our experimental conditions. As the fluorescence signals intensified, the surface-enhanced Raman scattering (SERS) intensities reduced on the contrary due to less rhodamine dyes on Au NPs as the Hg(II) concentration increased. The rhodamine 6G (Rh6G) and rhodamine 123 (Rh123) dyes were examined via fluorescence and SERS measurements depending on Hg(II) concentrations. Fast and easy fluorescence detection of an Hg (II) concentration as low as a few ppm could be achieved by naked eye using citrate-reduced Au NPs.

Study of HOMO and LUMO Energy Levels for Spirolactam Ring Moiety Using Electrochemical Approach

  • Kim, Hyungjoo;Lee, Sehoon;Son, Young-A
    • 한국염색가공학회지
    • /
    • 제25권2호
    • /
    • pp.83-88
    • /
    • 2013
  • Rhodamine dyes have been studied in various scientific areas due to their excellent photophysical properties. In particular, these rhodamine dyes are one of the most famous fluorophores as signal unit in chemosensor study. This is related to spirolactam ring system in rhodamine dyes. When the spirolactam ring is closed, there is nonfluorescence and colorless. Whereas, ring-opening of the corresponding spirolactam induces strong fluorescence and color. These absorption and emission changes are related to structural changes as well as electron energy potential levels such as HOMO and LUMO values. In this study, two different structures of rhodamine 6G hydrazide depending on the spirolactam ring system were investigated using absorption measurement, electrochemical measurement and computational calculations.

Rhodamine 6G Based New Fluorophore Chemosensor Toward Hg2+

  • Son, Young-A;Park, June-Min
    • 한국염색가공학회지
    • /
    • 제24권3호
    • /
    • pp.158-164
    • /
    • 2012
  • Rhodamine dyes belong to xanthene family has excellent photostability and photophysical properties. In rhodamine dyes, Rhodamine 6G and its precursors also have xanthene chromophore and it shows high fluorescent quantum yield. Rhodamine 6G derivates are simple to synthesis and its high sensitivity and water solubility are suitable as good chemosensor. In this regard, Rhodamine 6G derivates which have selectivity to specific metal cation can used to detect various heavy metal ions. In this study, rhodamine 6G derivatives were synthesized by reaction of rhodamine 6G hydrazide and glyoxal and 4-phenyl thiosemicarbazide and it showed colorimetric and fluorescence sensing toward $Hg^{2+}$ ion. This novel chemosensor was analyzed and measured on UV-Vis and fluorescence spectrophotometer. HOMO/LUMO values were also calculated by computational calculation.

수용액중의 Rhodamine 6G 염료의 콘키오린 층에 대한 흡착평형 (Adsorption Equilibrium of Rhodamine 6G onto the Conchiolin Layer from Aqueous Solution)

  • 신춘환;송동익
    • 한국환경과학회지
    • /
    • 제14권12호
    • /
    • pp.1195-1201
    • /
    • 2005
  • In order to develop a dye coloring technology on Conchiolin layer in cultured pearls, appropriate dyes were selected, their solubilities in various solvents were studied, and adsorption and desorption experiments were performed. Solubilities of several basic dyes known to suitable for the pearl coloring, i.e., Rhodamine 6G(R6), Rhodamine B(RB) and Methylene Blue(MB), in several solvents (distilled water, methanol, ethanol, and acetone) were investigated. Among these dyes, R6 was chosen as a dye for single component adsorption and desorption experiment due to the relatively good solubility in various solvents tested. Solubilities of dyes were judged to be enough to color the pearls since dye concentrations in pearl coloring are, in general, not so high. The internal surface area of the pearl layer is believed to be directly related to the dye adsorption, the single-point internal surface area of the pearl layer measured at the nitrogen relative pressure of 0.3 was found to be $0.913m^2/g$, and the BET internal surface area, $1.01m^2/g$ The most probable diameters of micropores and macropores were found to be $40{\AA}$and $5000{\AA}$ respectively, from the pore size distribution data. Adsorption isotherm was well fitted to the Langmuir isotherm model, resulting in q=$\frac{1.62C}{1+1.09C^{.}}$

CdS Nanoparticles as Efficient Fluorescence Resonance Energy Transfer Donors for Various Organic Dyes in an Aqueous Solution

  • Ock, Kwang-Su;Ganbold, Erdene-Ochir;Jeong, Sae-Ro-Mi;Seo, Ji-Hye;Joo, Sang-Woo
    • Bulletin of the Korean Chemical Society
    • /
    • 제32권10호
    • /
    • pp.3610-3613
    • /
    • 2011
  • CdS nanoparticles (NPs) were synthesized in an aqueous phase in order to investigate their spectral behaviors as efficient fluorescence resonance energy transfer (FRET) donors for various organic dye acceptors. Our prepared CdS NPs exhibiting strong and broad emission spectra between 480-520 nm were able to transfer energy in a wide wavelength region from green to red fluorescence dyes. Rhodamine 6G (Rh6G), rhodamine B (RhB), and sulforhodamine 101 acid (Texas red) were tested as acceptors of the energy transfer from the CdS NPs. The three dyes and synthesized CdS NPs exhibited good FRET behaviors as acceptors and donors, respectively. Energy transfers from the CdS NPs and organic Cy3 dye were compared to the same acceptor Texas red dye at different concentrations. Our prepared CdS NPs appeared to exhibit better FRET behaviors comparable to those of the Cy3 dye. These CdS NPs in an aqueous solution may be efficient FRET donors for various organic dyes in a wide wavelength range between green and red colors.

로다민 기반 염료감응형 태양전지의 제조 및 특성 분석 (Fabrication and Characterization of Dye-Sensitized Solar Cells Based on Rhodamine Dyes)

  • 최강훈;정혜인;안병관
    • 한국전기전자재료학회논문지
    • /
    • 제28권11호
    • /
    • pp.731-736
    • /
    • 2015
  • Rhodamine B (RhB) was utilized as a dye sensitizer for dye-sensitized solar cells (DSSCs) and its photovoltaic property was examined under the illumination of AM 1.5 G, $100mWcm^{-2}$. DSSCs based on RhB exhibited typical photovoltaic properties with an open-circuit voltage ($V_{OC}$) of 0.34 V, a short-circuit current ($J_{SC}$) of $1.55mA{\cdot}cm^{-2}$, a fill factor (FF) of 50%, and a conversion efficiency (PCE) of 0.26%. In order to further improve the photovoltaic properties of RhB-based DSSCs, the effect of (i) incorporating a strong electron-donating NCS unit into the RhB molecular backbone, (ii) combining a bis-negatively charged zinc complex anion ($Zn-dmit_2$, dmit=di-mercapto-dithiol-thione) with the amine cation of RhB, (iii) co-adsorbing RhB dyes with chenodeoxycholic acid (CDCA) molecules onto porous $TiO_2$ electrodes, was investigated and discussed.

수용액에서의 이성분 및 삼성분 염기성 염료의 진주층에 대한 경쟁흡착 (Binary and Ternary Competitive Adsorption of Basic Dyes from Aqueous Solution onto the Conchiolin Layer)

  • 신춘환;송동익
    • 대한환경공학회지
    • /
    • 제28권3호
    • /
    • pp.270-275
    • /
    • 2006
  • 채취한 양식진주를 불순물 제거와 표면표백을 통해 염색이 용이하도록 전처리하였다. 전처리된 양식 진주의 표면은 해수로부터 형성된 경단백질의 일종인 Conchiolin 막으로 덮혀있기 때문에 Conchiolin 층에 흡착이 가능한 염료를 선택하여 상품으로 원하는 색상을 흡착하는 공정이 필요하다. Conchiolin 층에 흡착 가능한 염료들은 Rhodamine 6aG(R6G), Rhodamine B(RB) 및 Methylene Blue(MB) 등의 염기성 염료들이 주류를 이루고 있으며 이들 염기성 염료를 선택하여 각각 이성분 및 삼성분으로 염색용액을 제조하여 경쟁흡착 실험을 수행하였다. 이성분 및 삼성분 경쟁흡착의 친화도는 단일성분 흡착 model 인 Langmuir 혹은 Redlich-Peterson(RP) model과 결합된 ideal adsorbed solution theory(IAST)를 이용하였으며, 흡착자료와 IAST 예측치의 차이를 $R^2$ 및 SSE 값으로 판단하였다. 결과적으로 분급되지 않은 진주층에 대한 R6G와 RB의 경쟁흡착의 경우에는 IAST 예측치는 실험값과 잘 일치하고 있으나, 분말상 진주층의 경우, 높은 농도에서의 RB는 실험치와 예측치가 일치하고 있지 않음을 알 수 있었다. 분급된 진주층의 경우에도 R6G/RB, R6G/MB, MB/RB에서 이성분계 혼합용액의 이성분 경쟁흡착에서 R6G/RB의 경우에만 RB는 잘 일치하지 않음을 확인되었다. 삼성분계의 경우에도 RB를 제외하고는 실험치와 예측치가 잘 일치하고 있었다.

Room-temperature synthesis of cobalt nanoparticles and their use as catalysts for Methylene Blue and Rhodamine-B dye degradation

  • Mondal, Arijit;Mondal, Asish;Mukherjee, Debkumar
    • Advances in nano research
    • /
    • 제3권2호
    • /
    • pp.67-79
    • /
    • 2015
  • Air stable nanoparticles were prepared from cobalt sulphate using tetra butyl ammonium bromide as surfactant and sodium borohydride as reductant at room temperature. The cobalt nanocolloids in aqueous medium were found to be efficient catalysts for the degradation of toxic organic dyes. Our present study involves degradation of Methylene Blue and Rhodamine-B using cobalt nanoparticles and easy recovery of the catalyst from the system. The recovered nanoparticles could be recycled several times without loss of catalytic activity. Palladium nanoparticles prepared from palladium chloride and the same surfactant were found to degrade the organic dyes effectively but lose their catalytic activity after recovery. The cause of dye colour discharge by nanocolloids has been assigned based on our experimental findings.

Nb2O5-Graphene나노복합체의 제조 및 유기염료 광촉매 분해반응의 응용성에 관한 연구 (Preparation of Nb2O5-Graphene Nanocomposites and Their Application in Photocatalytic Degradation of Organic Dyes)

  • 박해수;고원배
    • Elastomers and Composites
    • /
    • 제49권4호
    • /
    • pp.330-335
    • /
    • 2014
  • Niobium pentoxide ($Nb_2O_5$) 나노입자는 niobium (V) chloride 와 pluronic F108NF를 전구체와 주형제로 사용하여 합성하였다. $Nb_2O_5$-graphene나노복합체는 아르곤 가스 분위기 전기로 조건에서 2시간 동안 $700^{\circ}C$로 가열하였다. 시료의 결정화도, 결정형태, 광촉매 분해 반응성은 X-ray diffraction, scanning electron microscopy, transmission electron microscopy, UV-vis spectroscopy를 사용하여 측정하였다. $Nb_2O_5$-graphene나노복합체는 254 nm의 자외선 조건에서 유기염료 광촉매 분해 반응의 광촉매로 사용되었다. 유기염료는 methylene blue (MB), methyl orange (MO), rhodamine B (RhB), brilliant green (BG)이 사용되었다. 또한 $Nb_2O_5$-graphene나노복합체를 사용하여 유기염료 광촉매 분해 반응의 반응 속도를 결정하였다.

전기막 시스템에서 유속과 농도에 따른 형광염료의 농축 및 전기영동 이동도에 관한 연구 (Studies on Preconcentration and Electrophoretic Mobility of Fluorescent Dyes Depending on Flow Velocity and Concentration in the Electromembrane System)

  • 김민성;김범주
    • 공업화학
    • /
    • 제34권1호
    • /
    • pp.45-50
    • /
    • 2023
  • 마이크로 유체 시스템을 활용한 농축 기술은 저과다 분석물을 특정 위치에 모으거나 추출하는 기술로, 의료 및 바이오 분야를 포함한 다양한 분야에서 필수적인 기술로 각광받고 있다. 본 연구에서는 이온교환막을 활용한 전기막 시스템(electromembrane system)에서 전기영동(electrophoresis) 현상을 이용해 타겟 샘플을 농축할 때 고려해야 할 변수에 대한 광범위한 연구를 수행하였다. 가시화가 용이한 형광염료로 음전하를 띄는 Alexa Fluor 488과 양전하를 띄는 Rhodamine 6G을 샘플로 사용하여, 타겟 샘플이 포함된 메인 채널의 유속과 메인/버퍼 채널의 농도, 전압 등이 샘플 농축에 어떻게 영향을 끼치는지 알아보았다. 실험 결과, 메인/버퍼 채널 농도비가 같을 경우, 유속이 느릴수록, 샘플이 포함된 메인 채널의 농도가 높을수록, 타겟 샘플의 농축이 훨씬 더 잘 일어난다는 사실을 알 수 있었다. 또한 본 연구를 통해 Alexa Fluor 488과 Rhodamine 6G의 전기영동 이동도 값을 실험적으로 계산하여 비교하였다.