• Title/Summary/Keyword: RhoA

Search Result 3,619, Processing Time 0.029 seconds

RhoBTB3 Regulates Proliferation and Invasion of Breast Cancer Cells via Col1a1

  • Kim, Kyungho;Kim, Youn-Jae
    • Molecules and Cells
    • /
    • v.45 no.9
    • /
    • pp.631-639
    • /
    • 2022
  • Breast cancer is the leading cause of cancer-related death in women worldwide, despite medical and technological advancements. The RhoBTB family consists of three isoforms: RhoBTB1, RhoBTB2, and RhoBTB3. RhoBTB1 and RhoBTB2 have been proposed as tumor suppressors in breast cancer. However, the roles of RhoBTB3 proteins are unknown in breast cancer. Bioinformatics analysis, including Oncomine, cBioportal, was used to evaluate the potential functions and prognostic values of RhoBTB3 and Col1a1 in breast cancer. qRT-PCR analysis and immunoblotting assay were performed to investigate relevant expression. Functional experiments including proliferation assay, invasion assay, and flow cytometry assay were conducted to determine the role of RhoBTB3 and Col1a1 in breast cancer cells. RhoBTB3 mRNA levels were significantly up-regulated in breast cancer tissues as compared to in adjacent normal tissues. Moreover, RhoBTB3 expression was found to be associated with Col1a1 expression. Decreasing RhoBTB3 expression may lead to decreases in the proliferative and invasive properties of breast cancer cells. Further, Col1a1 knockdown in breast cancer cells limited the proliferative and invasive ability of cancer cells. Knockdown of RhoBTB3 may exert inhibit the proliferation, migration, and metastasis of breast cancer cells by repressing the expression of Col1a1, providing a novel therapeutic strategy for treating breast cancer.

Analysis of the Korean peninsula precipitation using inverse statistics methodology (역통계 방법론을 이용한 한반도의 강수 특성 분석)

  • Min, Seungsik
    • The Korean Journal of Applied Statistics
    • /
    • v.29 no.3
    • /
    • pp.425-435
    • /
    • 2016
  • In this paper, we analyze the inverse statistics of rainfall for 12 regions from 1973 to 2014. We obtain a probability density function f(x) of daily rainfall x, and $f({\tau}_{\rho})$ of the first passage time ${\tau}_{\rho}$ for a given ${\rho}$. Lastly, we derive the relation between ${\rho}$ and ${\tau}_{mean}({\rho})$, i.e., the averaged value of ${\tau}_{\rho}$. The analyses result in the x and ${\tau}_{\rho}$ have stretched exponential distributions. Also, ${\tau}_{mean}({\rho})$ has the form of a stretched exponential function. We derive the shape parameter ${\beta}$ of the distribution, and analyze the characteristics of 12 regional rainfalls.

Role of Rho A and F-actin for uropod formation in T lymphocytes (T 세포의 Uropod 형성에 있어 Rho A와 F-actin의 역할)

  • Lee, Jong-Hwan
    • Journal of Life Science
    • /
    • v.17 no.2 s.82
    • /
    • pp.192-197
    • /
    • 2007
  • Two distinct morphological features, leading edge and uropod, in mobile T lymphocyte are crucial for efficient directional movement. The uropod is a unique rear protrusion in migrating lymphocytes, in which several proteins, including CD44, ERM (ezrin/radixin/moesin), and F-actin cytoskeleton are concentrated and concerted. F-actin cytoskeleton is a basic mold for the shape maintenance. Rho A small GTPase acts as cytoskeleton organizer, So far, various pathways potentially can induce the Rho activation. PDZ domain is able to increase active Rho A form (Rho-GTP) level, reorganize F-actin cytoskeleton, disrupts the uropod structure and cell migration was diminished, suggesting that signaling pathways between Rho and F-artin cytoskeleton are related to uropod formation.

Presteady State Kinetics of ATP Hydrolysis by Escherichia coli Rho Protein Monitors the Initiation Process

  • Jeong, Yong-Ju;Kim, Dong-Eun
    • Bulletin of the Korean Chemical Society
    • /
    • v.27 no.2
    • /
    • pp.224-230
    • /
    • 2006
  • Escherichia coli transcription termination factor Rho catalyzes the unwinding of RNA/DNA duplex in reactions that are coupled to ATP binding and hydrolysis. We report here the kinetic mechanism of presteady state ATP binding and hydrolysis by the Rho-RNA complex. Presteady state chemical quenched-flow technique under multiple turnover condition was used to probe the kinetics of ATP binding and hydrolysis by the Rho-RNA complex. The quenched-flow presteady state kinetics of ATP hydrolysis studies show that three ATPs are bound to the Rho-RNA complex with a rate of $4.4\;{\times}\;10^5M^{-1}s^{-1}$, which are subsequently hydrolyzed at a rate of $88s^{-1}$ and released during the initiation process. Global fit of the presteady state ATP hydrolysis kinetic data suggests that a rapid-equilibrium binding of ATP to Rho-RNA complex occurs prior to the first turnover and the chemistry step is not reversible. The initial burst of three ATPs hydrolysis was proposed to be involved in the initialization step that accompanies proper complex formation of Rho-RNA. Based on these results a kinetic model for initiation process for Rho-RNA complex was proposed relating the mechanism of ATP binding and hydrolysis by Rho to the structural transitions of Rho-RNA complex to reach the steady state phase, which is implicated during translocation along the RNA.

Structure-Reactivity Relationship of Benzyl Benzenesulfonates. Part 4. Application of Correlation Interaction Coefficients

  • 여수동;정덕영;박종환;김성홍;황규탁
    • Bulletin of the Korean Chemical Society
    • /
    • v.19 no.4
    • /
    • pp.434-436
    • /
    • 1998
  • The mechanism of nucleophilic displacement was studied by using three variable systems of ${\rho}_X,\; {\rho}_Y,\; and {\rho}_Z$ obtained from the change of substituent X, Y, and Z for the reaction of (Z)-substituted benzyl (X)-benzensulfonates with (Y)-substituted thiobenzamides in acetone at 45 ℃. The results ${\rho}_Z$<0 and ${\rho}_YZ$>${\rho}_XZ$ indicate that this reaction series proceeded via a dissociative $S_N2$ mechanism. The prediction of the movement of TS by using the sign of ${\rho}_XZ{\cdot}{\rho}_{YZ}$ accorded with the Hammond postulate.

Rhodanthpyrone A and B play an anti-inflammatory role by suppressing the nuclear factor-κB pathway in macrophages

  • Kim, Kyeong Su;Han, Chang Yeob;Han, Young Taek;Bae, Eun Ju
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.23 no.6
    • /
    • pp.493-499
    • /
    • 2019
  • Macrophage-associated inflammation is crucial for the pathogenesis of diverse diseases including metabolic disorders. Rhodanthpyrone (Rho) is an active component of Gentiana rhodantha, which has been used in traditional Chinese medicine to treat inflammation. Although synthesis procedures of RhoA and RhoB were reported, the biological effects of the specific compounds have never been explored. In this study, the anti-inflammatory activity and mechanisms of action of RhoA and RhoB were studied in lipopolysaccharide (LPS)-stimulated macrophages. Pretreatment with RhoA and RhoB decreased inducible nitric oxide synthase and cyclooxygenase-2 expressions in RAW 264.7 cells and in thioglycollate-elicited mouse peritoneal macrophages. In addition, it downregulated transcript levels of several inflammatory genes in LPS-stimulated RAW 264.7 cells, including inflammatory cytokines/chemokines (Tnfa, Il6, and Ccl2) and inflammatory mediators (Nos2 and Ptgs2). Macrophage chemotaxis was also inhibited by treatment with the compounds. Mechanistic studies revealed that RhoA and RhoB suppressed the nuclear factor $(NF)-{\kappa}B$ pathway, but not the canonical mitogen activated protein kinase pathway, in LPS-stimulated condition. Moreover, the inhibitory effect of RhoA and RhoB on inflammatory gene expressions was attenuated by treatment with an $NF-{\kappa}B$ inhibitor. Our findings suggest that RhoA and RhoB play an anti-inflammatory role at least in part by suppressing the $NF-{\kappa}B$ pathway during macrophage-mediated inflammation.

ADDITIVE ρ-FUNCTIONAL EQUATIONS IN NON-ARCHIMEDEAN BANACH SPACE

  • Paokanta, Siriluk;Shim, Eon Hwa
    • The Pure and Applied Mathematics
    • /
    • v.25 no.3
    • /
    • pp.219-227
    • /
    • 2018
  • In this paper, we solve the additive ${\rho}$-functional equations $$(0.1)\;f(x+y)+f(x-y)-2f(x)={\rho}\left(2f\left({\frac{x+y}{2}}\right)+f(x-y)-2f(x)\right)$$, where ${\rho}$ is a fixed non-Archimedean number with ${\mid}{\rho}{\mid}$ < 1, and $$(0.2)\;2f\left({\frac{x+y}{2}}\right)+f(x-y)-2f(x)={\rho}(f(x+y)+f(x-y)-2f(x))$$, where ${\rho}$ is a fixed non-Archimedean number with ${\mid}{\rho}{\mid}$ < |2|. Furthermore, we prove the Hyers-Ulam stability of the additive ${\rho}$-functional equations (0.1) and (0.2) in non-Archimedean Banach spaces.

Cross-interaction Constants in the Nucleophilic Reactions of Carbonyl Compounds Involving a Tetrahedral Intermediate

  • Lee, Ik-Choon
    • Bulletin of the Korean Chemical Society
    • /
    • v.15 no.11
    • /
    • pp.985-990
    • /
    • 1994
  • Cross-interaction constants, ${\rho}^e_{XY}$, ${\rho}_{YZ}$ and ${\rho}_{XZ}$ are defined using observed rate constant, k_N=(k_1/k_{-1})k_2=Kk_2$, for the stepwise carbonyl addition reactions involving the rate-limiting breakdown of a tetrahedral intermediate $(T^{\pm})$. Abundant experimental evidence in the literature enables us to determine signs for the three constants for such mechanism, ${\rho}^e_{XY}$>0, ${\rho}_{YZ}$<0 and ${\rho}_{XZ}$0. These are in contrast to those for the concerted $S_N2$ mechanism, ${\rho}_{XY}$<0, ${\rho}_{YZ}$>0 and ${\rho}_{XZ}$, and provide useful mechanistic criteria. In the light of these criteria, mechanisms of some nucleophilic reactions of carbonyl compounds are re-examined.

NEW SUBCLASS OF MEROMORPHIC MULTIVALENT FUNCTIONS ASSOCIATED WITH HYPERGEOMETRIC FUNCTION

  • Khadr, Mohamed A.;Ali, Ahmed M.;Ghanim, F.
    • Nonlinear Functional Analysis and Applications
    • /
    • v.26 no.3
    • /
    • pp.553-563
    • /
    • 2021
  • As hypergeometric meromorphic multivalent functions of the form $$L^{t,{\rho}}_{{\varpi},{\sigma}}f(\zeta)=\frac{1}{{\zeta}^{\rho}}+{\sum\limits_{{\kappa}=0}^{\infty}}{\frac{(\varpi)_{{\kappa}+2}}{{(\sigma)_{{\kappa}+2}}}}\;{\cdot}\;{\frac{({\rho}-({\kappa}+2{\rho})t)}{{\rho}}}{\alpha}_{\kappa}+_{\rho}{\zeta}^{{\kappa}+{\rho}}$$ contains a new subclass in the punctured unit disk ${\sum_{{\varpi},{\sigma}}^{S,D}}(t,{\kappa},{\rho})$ for -1 ≤ D < S ≤ 1, this paper aims to determine sufficient conditions, distortion properties and radii of starlikeness and convexity for functions in the subclass $L^{t,{\rho}}_{{\varpi},{\sigma}}f(\zeta)$.

Structure direct agent-assisted hydrothermal synthesis and small gases adsorption behavior of pure RHO zeolite (구조유도물질 18-crown-6 ether를 이용한 순수한 RHO 제올라이트 수열합성과 작은 가스 흡착 거동)

  • Kim, Beom-Ju;Sharma, Pankaj;Han, Moon-Hee;Cho, Churl-Hee
    • Journal of Energy Engineering
    • /
    • v.23 no.4
    • /
    • pp.141-149
    • /
    • 2014
  • In the present study, pure RHO zeolite was hydrothermally synthesized by using 18-crown-6 ether as a structure directing agent(SDA), and the small gases adsorption was investigated. Synthesized RHO zeolite was a cube shape particle of which average edge length was around $1.2{\mu}m$ and composed of primary crystallites having a diameter of around 100 to 200 nm. RHO zeolite structure was stable under 3h calcination at $600^{\circ}C$. Water adsorption data announced that RHO zeolite has a specific surface area of 483.32 m2/g and its micropore diameter was about 4 A. Gas adsorption was studied in the pressure range of 50 to 500 kPa for $CO_2$, $N_2$, $O_2$ and $H_2$. It was evident that RHO zeolite showed a strong $CO_2$ adsorption behavior. Especially, RHO zeolite showed a transient $CO_2$ adsorption behavior. The 3h $CO_2$ up-take at 50 kPa and 500 kPa was 1.283 and 3.357 mmol/g, respectively. The $CO_2/H_2$ selectivity was around 16 at 500 kPa. Compared with gas adsorption data for some representative microporous adsorbents, it was certain that RHO zeolite is a beneficial adsorbent for $CO_2/H_2$ separation.