• Title/Summary/Keyword: Rhizosphere pH

Search Result 85, Processing Time 0.023 seconds

pH Changes in the Rhizosphere Soil of Pokeberry (미국자리공의 근권 토양산성도의 변화)

  • 박용목;박범진;최기룡
    • The Korean Journal of Ecology
    • /
    • v.22 no.1
    • /
    • pp.7-11
    • /
    • 1999
  • The measurement of pH in the rhizosphere soil was conducted to clarify whether the growth of pokeberry plants affect the acidity of rhizosphere soil in two environmentally contrasting area Ulsan and Chongju city. The rhizosphere pH between 5.25 and 5.33 was shown in the pokeberry stand at Mt. Boomo located at Chongju. The rhizosphere pH of pokeberry stands at Mt. Bongdae, Mt. Sinsun and Mt. Totchil was below 5.0, and did not differ with depth and distance from the main axis of root. At Mt. Bongdae, however, the pH in the rhizosphere soil was significantly changed with soil depths though that was not changed horizontally. The rhizosphere pH at top soil was lower than that at subsoil, which indicates the fact that soil acidification at Mt. Bongdae was not caused by pokeberry plants. Furthermore, the rhizosphere pH did not change with the growth of pokeberry plants. These results indicate that the hypothesis that pokeberry plants acidify local soil environment should be reconsidered.

  • PDF

Distribution of Azotobacter in Rhizosphere and Sea (Rhizosphere와 해수에 있어서의 Azotobacter의 분포)

  • 홍순우;최영길
    • Korean Journal of Microbiology
    • /
    • v.12 no.1
    • /
    • pp.15-24
    • /
    • 1974
  • This experiment has been carried out with a view to elucidating the distribution of Azotobacter and their population size in rhizosphere and sea and designed ro compare the results with some environmental factors. Results of the experiment are summarized as follows: 1) It was observed that the population sizes of Azotobacter were decided upon the moisture content of soil and that the soil pH was one of the most impertant factors influencing the distribution of Azotobacter. 2)Population sizes of Azotobacter in rhizosphere were changed in accordance with the kinds of vegetation on soil: The rhizosphere where bamboo, corn, legume, and oak inhabit showed the largest population size of Azotobacter. On the other hand, rhizosphere of ginseng revealed no Azotobacter. However, the largest population of general fungi were measured at the rhizosphere. 3)Comparing the population sizes of general microbes in rhizosphere with those of non-rhizosphere, the population sizes of microbes in rhizosphere are larger than those of non-rhizosphere. 4)In coastal environments, population sizes of Azotobacter in surface water of sea are similar to those of the soil(mud) of tidal land. But the sizes are generally smaller than those of terrestrial soils.

  • PDF

Ubiquitous Presence and Activity of Thiosulfate Oxidizing Bacteria in Rhizosphere of Economically Important Crop Plants of Korea (국내 작물 근권에 서식하는 황산화세균의 분포와 합성)

  • Yim, Woo-Jong;Anandham, R.;Gandhi, P. Indira;Hong, In-Soo;Islam, M.R.;Trivedi, P.;Madhaiyan, M.;Han, Gwang-Hyun;Sa, Tong-Min
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.41 no.1
    • /
    • pp.9-17
    • /
    • 2008
  • The presence of thiosulfate oxidizing bacteria was examined in rhizosphere soils of 19 economically important plant species belonging to 10 different families. The results showed that the thiosulfate oxidizing bacteria were present in all the tested rhizosphere soils, and the total 32 thiosulfate oxidizing bacteria were recovered. Furthermore, the biochemical characterization revealed that 56% and 44% of the isolates belonged to the obligate chemolithoautotrophs and facultative heterotrophs, respectively. The isolates ATSR15P utilized 19.17 mM of thiosulfate and accumulated 11.65 mM of sulfate in the medium. Concurrently, the decrease in pH of the medium was observed. This study comprehensively demonstrates that the active sulfur oxidation is a ubiquitous phenomenon in the rhizosphere of crop plants in Korea.

Influences of Rice and Barley straw Application in the Rice Rhizosphere (수도근권(水稻根圈) 환경(環境)에 미치는 볏짚과 보릿집 시용(施用)의 영향(影響))

  • Lim, Sang-Soon;Kim, Kwang-Sik
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.21 no.4
    • /
    • pp.434-442
    • /
    • 1988
  • This study has been made to investigate the influences of organic matter on the soil composition, nitrogen fixing organism, soil enzyme activity and nitrogen fixing activity in the paddy rice rhizosphere when rice and barley straw were applied. The results are summarized as follows: 1. The pH in the submerged soil was increased from ear formation stage to harvesting. 2. In the rhizosphere, $Fe^{{+}{+}}$ content was decreased according to the growing stage, while increased in the nonrhizosphere. 3. In the initial stage, rhizosphere was higher than nonrhizosphere but in the late stage nonrhizosphere was higher than rhizosphere on the $NH_4-N$ content. 4. In the submerged soil, rhizosphere was higher than nonrhizosphere, on the concentration of glucose and pentose. 5. Changes of the number of nitrogen fixing organism in whole soil was not high. 6. Generally, rhizosphere was higher than nonrhizosphere on the soil enzyme activity such as phosphatase, ${\beta}$-glucosidase, and protease. 7. Acetylene-reducing activity was the highest in the tillering stage, and rhizosphere, Samgang (high-yielding variety) were higher than nonrhizosphere. Dongjin (general variety) respectively. 8. In the submerged soil applied barley straw, acetylene-reducing activity was slightly higher than rice straw in the initial stage.

  • PDF

Stabilization of Rhizosphere pH during Tomato Cultivation Using Expanded Rice Hull Substrate (양액재배용 평연화 왕겨 배지의 근권 pH 안정화)

  • 임상현;김경희;전신재;유근창
    • Journal of Bio-Environment Control
    • /
    • v.10 no.2
    • /
    • pp.95-100
    • /
    • 2001
  • In countries that consumes rice as a main staple, rice hulls are natural resources composed of a large amount of organic compounds and high uniformity in size. Rice hulls are expanded to get rid of a defect in untreated rice hulls and to be used as a hydroponic substrate. Research on rice hulls is continuing for the agricultural application. This research was conducted to stabilize rhizosphere pH of the expanded rice hull substrates because of high pH caused by repeated use in ERH(expanded ride hull) substrates and without increasing the cost of developing new substrates. Sphagnum peatmoss (pH 3.0-4.0) wee mixed with the expanded rice hull substrate in the ratio of 10% (v/v), and this ratio kept the pH range of 6.0 to 6.5 in the root area of tomato plants during growth and at the time of harvest of tomato fruits. Also absorbtion of nutrients was highly increased. The yield increased from 1,051 to 1,266 kg per tomato plant which were harvested by two clusters.

  • PDF

Screening of Salicylic acid Producing Rhizobacteria Isolated from Plant Roots and Rhizosphere (식물의 뿌리와 근권으로부터 Salicylic acid를 생성하는 근권세균의 검색)

  • 이민웅
    • Korean Journal Plant Pathology
    • /
    • v.14 no.6
    • /
    • pp.598-602
    • /
    • 1998
  • Twenty two rhizobacteria were isolated from the roots and rhizosphere of radish, carnation, potato and tomato. There isolates produced a fluorescent pigment in King's B medium and identified as Pseudomonas spp. These isolates colonized roots and rhizosphere of the host plants. In the study of cultural characteristics of the bacteria, the pH of the culture broth was changed from neutral (7.0) to alkali (8.8∼9.41) and the numbers of cells were increased from 106 to 108 after 40 hr of incubation in basal standard succinate medium. The salicylic acid production identified by pink color reaction were observed in 7 bacteria. Out of these 7 salicylic acid producing bacteria, only 2 strains of bacteria such as Pseudomonas fluorescens RS006, and Pseudomonas sp. EN401 were confirmed as salicylic acid producers by optical density measurement. Therefore, for screening of salicylic acid producing bacteria from the roots and rhizosphere, color reaction of the culture medium should be done in the first step, and then optical density measurement of culture extract should be made for the confirmation of salicylic acid production.

  • PDF

Ecology of Azotobacter in Bamboo Forest Soil (죽림토양의 azotobacter 생태)

  • 최영길
    • Korean Journal of Microbiology
    • /
    • v.13 no.1
    • /
    • pp.1-23
    • /
    • 1975
  • This experiment was designed to elucidate the environmental factors in rhizosphers of bamboo forest that affect the distribution and the population size of Azotobacter, and also to estimate the annual productivities of nitrogen fixed by Azotobacter species. The results of this experiment can be summarized as follows ; The rhizosphere of bamboo forest contained high free sugars as of 3-8 times more than non-rhizosphere (Bacon, 1968), and the contents of organic matter and amino acids of that are reltively higher than this. Because of high content of potassium, average of soil pH is near at 7.0. As above-mentioned enviromental factors, the population sizes of Actinomycetes, general fungi, general bacteria and Azotobacters are larger than those of non-rhizosphere and the ofllowings are general fungi and general bacteria by turns. Azotobacter is dependent upon the antagonistic Actinomycetes. The main carbon source for Azotobacter in nitrogn flxation at the rhizosphere was glucose and minors were fructose, maltose and sucrose by turns. Annual gains of nitrogen by Azotobacters in soil of bamboo forest within 10cm from surface are estimated as of 88.94 kg/ha at site A, 60.4kg/ha at site B and 67.38kg/ha at site C, respectively.

  • PDF

Changes in the Composition and Microbial Community of the Pepper Rhizosphere in Field with Bacterial Wilt Disease

  • Hyun Gi, Kong;Mee Kyung, Sang;Ju Hee, An;Songhwa, Kim;Yong Ju, Jin;Jaekyeong, Song
    • The Plant Pathology Journal
    • /
    • v.38 no.6
    • /
    • pp.692-699
    • /
    • 2022
  • Bacterial wilt caused by Ralstonia solanacearum is considered one of the most harmful diseases of pepper plants. Recently, research on plant disease control through the rhizosphere microbiome has been actively conducted. In this study, the relationship with disease occurrence between the neighboring plant confirmed by analyzing the physicochemical properties of the rhizosphere soil and changes in the microbial community. The results confirmed that the microbial community changes significantly depending on the organic matters, P2O5, and clay in the soil. Despite significant differences in microbial communities according to soil composition, Actinobacteriota at the phylum level was higher in healthy plant rhizosphere (mean of relative abundance, D: 8.05 ± 1.13; H: 10.06 ± 1.59). These results suggest that Actinobacteriota may be associated with bacterial wilt disease. In this study, we present basic information for constructing of healthy soil in the future by presenting the major microbial groups that can suppress bacterial wilt.

Occurrence of Yeasts in Cultivated Soils in El-Minia City, Egypt

  • Haridy, Mamdouh S.A.
    • Mycobiology
    • /
    • v.30 no.1
    • /
    • pp.27-30
    • /
    • 2002
  • Two-hundred two yeast strains were isolated from rhizosphere(87 strains) and nonrhizosphere(115 strains) areas of potato, maize, vegetable marrow, and cabbage plants. On the basis of 26 morphological and physiological properties, the isolated yeast strains were assigned to 9 genera and 15 species. Trichosporon beigelii, Kluyveromyces marxianus and Torulaspora delbrueckii were the dominant species. Cryptococcus humicolus and Candida tropicalis were represented by considerable numbers of strains. Of low occurrence were Saccharomyces cerevisiae and Candida blankii. Other yeast species were represented by single or two strains. Total counts of yeast cells per gram dry soil ranged from $1.1{\times}10^3$ to $6.6{\times}10^3$ in soil samples of rhizosphere areas and from $6.5{\times}10^2$ to $5.6{\times}10^3$ in soil samples of nonrhizosphere areas. Types of the tested plants affected not only the total counts of yeast cells but also spectra of yeast species. Relationships of age of potato plant, moisture contests of soil samples, and its pH values and total counts of yeast cells were discussed.

Studies on the Root Rot of Ginseng(III) (인삼근부병에 관한 연구 3)

  • 이민웅
    • Korean Journal of Microbiology
    • /
    • v.12 no.4
    • /
    • pp.153-158
    • /
    • 1974
  • Around and in the area of Wolgot-Muon, Gimpo-Gun, Kyunggi province, I examined total bacteria, general Pseudomonas spp., fluorescent Pseudomonas spp., in soil layers and also in different kinds of soil of respective diseased, uncultivated, and healthy areas, and found the followings. 1. In the diseased and uncultivated areas, the content of moisture and silt was greater than in the healthy area. 2. Contrary to the above, the healthy area contained a greater amount of inorganic elements such as $P_2O_5$, K, Ca and of soil particle such as Cs and Fs. The degree of pH and content of Mg were even in three types of soils. 3. Total bacteria were found in abundance in the healthy soil. It was observed that in all types of areas, bacteria reside in abundance in the rhizosphere, i.e., 10-15 cm layers and that the closer the surface, the greater the numbers of the bacteria. 4. General Pseudomonas spp. were also found to the greater in number on the surface of the soil, especially so in the rhizosphere, with the numbers decreasing as the soil layers increase. Numbers of this bacteria in all types of area were nearly uniform. 5. A great number of fluorescent Pseudomonas spp. were found in the diseased area, especially so in the rhizosphere.

  • PDF