• Title/Summary/Keyword: Rhizoctonia solani. Pseudomonas aeruginosa

Search Result 8, Processing Time 0.017 seconds

Biological Control Activities of Plant Growth Promoting Rhizobacteria from Organic and Nonorganic Rice Fields against Rice Sheath Blight Pathogen (Rhizoctonia solani Kühn)

  • Harvianti, Yuniar;Kasiamdari, Rina Sri
    • Microbiology and Biotechnology Letters
    • /
    • v.49 no.3
    • /
    • pp.374-383
    • /
    • 2021
  • Rhizoctonia solani is one of the major pathogens that cause sheath blight disease in rice. Sheath blight is one of the most difficult diseases to control. Biological control (with the use of rhizobacteria) is one of the ways to control this disease. Plant Growth Promoting Rhizobacteria (PGPR) is a rhizosphere bacterium that can be used to enhance plant growth. The composition of the rhizobacteria in organic and nonorganic soil is affected by the chemical characteristics of the soil - which influences plant physiology and root exudation patterns. This study aimed to obtain a species of rhizobacteria which shows PGPR activity, from organic and nonorganic rice fields and test their capability to suppress R. solani growth. Out of 23 isolates screened for PGPR activity, the following isolates showed high PGPR activity and were selected for in vitro antagonistic activity testing against R. solani: ISO6, ISO11, ISO15, ISN2, ISN3, and ISN7, The six isolates produced 43,42-75,23 ppm of IAA, possessed phosphorus solubilization capability, and chitinase-producing activity. ISO6 (54.88%) and ISN7 (83.33%) displayed high inhibition capacities against R. solani, in vitro. ISO6 and ISN7 inhibited the growth of R. solani lesions on rice leaves by 89% and 100% (without lesion), respectively, after 7 days of incubation. Analysis of their 16S rRNA sequences revealed that the ISO6 isolate was Citrobacter freundii and ISN7 isolate was Pseudomonas aeruginosa.

Screening and Identification of an Antifungal Pseudomonas sp. That Suppresses Balloon Flower Root Rot Caused by Rhizoctonia solani

  • Ryu, Jae-San;Lee, Sang-Dae;Lee, Young-Han;Lee, Seong-Tae;Kim, Dong-Kil;Cho, Soo-Jeong;Park, Sang-Ryeol;Bae, Dong-Won;Park, Ki-Hun;Yun, Han-Dae
    • Journal of Microbiology and Biotechnology
    • /
    • v.10 no.4
    • /
    • pp.435-440
    • /
    • 2000
  • A pathogenic fungus causing balloon flower root rot (Platycodon grandiflorum) was isolated from naturally infected roots. The microbial characteristics of the isolated microorganism were similar to those of Rhizoctonia solani. About 500 bacterial species from field soils were screened for a biological agent against the above-mentioned putative pathogen, and several bacteria with the antifungal activity were isolated. Among them, the isolated JS2 was identified as Pseudomonas aeruginosa. This strain showed a broad spectrum of antifungal activity potentially. When the antifungal substance was purified from a broth culture of JS2, it was identified as 2,4-diacetylphloroglucinol (Phl).

  • PDF

Control of Crisphead Lettuce Damping-off and Bottom Rot by Seed Coating with Alginate and Pseudomonas aeruginosa LY-11

  • Heo, Kwang-Ryool;Lee, Kwang-Youll;Lee, Sang-Hyun;Jung, Soon-Je;Lee, Seon-Woo;Moon, Byung-Ju
    • The Plant Pathology Journal
    • /
    • v.24 no.1
    • /
    • pp.67-73
    • /
    • 2008
  • Seedling damping-off and bottom rot caused by Rhizoctonia solani are yield limiting diseases of crisphead lettuce. To provide biocontrol measure in the management of the diseases, biocontrol strain Pseudomonas aeruginosa LY-11 was isolated from lettuce rhizosphere and introduced into crisphead lettuce rhizosphere by the seed coating delivery method. Alginate was used as a coating material to generate beads containing $10^6-10^{6.5}$ colony-forming units (CFUs) of viable bacterial cells of LY-11. When seeds germinated from the alginate beads containing the strain LY-11, the bacteria established mostly in plant rhizosphere to maintain at least $10^4$ CFU per gram of plant tissues. Crisphead lettuce seedlings germinated from the entrapped seeds were less affected from damping-off and bottom rot with disease control values of 70.4% and 85.4% respectively. Although P. aeruginosa LY-11 colonized plant rhizosphere and not phyllosphere, the result indicated that bottom rot caused by the foliar inoculation of R. solani was effectively reduced by the rhizobacteria. All data suggested that immobilized rhizobacterial application in seeds by alginate coating could control damping-off and induce induced systemic resistance of crisphead lettuce to reduce bottom rot.

In vitro Anti-fungal Activity of Various Hydroxylated Fatty Acids Bioconverted by Pseudomonas aeruginosa PR3

  • Bajpai Vivek K.;Kim, Hak-Ryul;Kang, Sun-Chul
    • Journal of Applied Biological Chemistry
    • /
    • v.49 no.4
    • /
    • pp.131-134
    • /
    • 2006
  • The in vitro anti-fungal activity of hydroxylated fatty acids obtained from microbial conversion by Psuedomonas aeruginosa PR3 using ricinoleic acid(RA), eicosadienoic acid(EDA) and conjugated linoleic acid(CLA) as substrates, was investigated. Bioconverted hydroxylated fatty acids showed different anti-fungal activities potentials against the range of phytopathogenic fungi such as Botrytis cinerea, Rhizoctonia solani, Fusarium oxysporum, Sclerotonia sclerotiorum, Colletotricum capsici, Fusarium solani and Phytophthora capsici. RA and EDA showed up to 50% fungal mycelial inhibition at the concentration of $5{\mu}l\;ml^{-1}$. RA, EDA and CLA also exhibited anti-fungal activities with minimum inhibitory concentration(MIC), ranging from 500 to $1000{\mu}g\;ml^{-1}$. Screening was also carried out using varied concentrations of bioconverted RA and EDA for determining the anti-fungal effect on the spore germination of different fungi. Bioconverted RA and EDA showed a considerable degree of spore germination inhibition.

Production, Purification and Antifungal Activity of Antibiotic Substances Produced by Pseudomonas aeruginosa Strain B5

  • Kim, Beom-Seok
    • Journal of Microbiology and Biotechnology
    • /
    • v.3 no.1
    • /
    • pp.12-18
    • /
    • 1993
  • Pseudomonas aeruginosa strain B5 with antagonistic activity against Phytophthora capsici and Magnaporthe grisea, was isolated from pepper-growing soil. From the culture of P. aeruginosa strain B5 grown on King's medium B, antibiotic substances were purified using XAD-2 column chromatography. XAD-2 eluates inhibited not only the mycelial growth of P. capsid and M. grisea, but also the development of Phytophthora blight on pepper plants. The crude antibiotic substances were further purified by using silica gel column chromatography, Sephadex LH-20 column chromatography, thin layer chromatography on silica gel plates, and high performance liquid chromatography. Silica gel column chromatogrphy gave good separation of the four antibiotic substances. The pure antibiotics P1, P2, and P3 finally purified by preparative HPLC inhibited the mycelial growth of P. capsici, at concentrations from 7 to 10 $\mu g/ml$. Only P1 and P2 had antifungal activity against M. grisea at 8 $\mu g/ml$. P1 and P3 were highly inhibitory to the mycelial growth of Botryosphaeria dothidea and Botrytis cinerea at relatively low concentrations. However, the three antibiotics had no antifungal activity against Rhizoctonia solani. The chemical structures of these antibiotics are being identified.

  • PDF

Production, Purification, and Characterization of Antifungal Metabolite from Pseudomonas aeruginosa SD12, a New Strain Obtained from Tannery Waste Polluted Soil

  • Dharni, Seema;Alam, Mansoor;Kalani, Komal;Abdul-Khaliq, Abdul-Khaliq;Samad, Abdul;Srivastava, Santosh Kumar;Patra, Dharani Dhar
    • Journal of Microbiology and Biotechnology
    • /
    • v.22 no.5
    • /
    • pp.674-683
    • /
    • 2012
  • A new strain, SD12, was isolated from tannery waste polluted soil and identified as Pseudomonas aeruginosa on the basis of phenotypic traits and by comparison of 16S rRNA sequences. This bacterium exhibited broad-spectrum antagonistic activity against phytopathogenic fungi. The strain produced phosphatases, cellulases, proteases, pectinases, and HCN and also retained its ability to produce hydroxamate-type siderophore. A bioactive metabolite was isolated from P. aeruginosa SD12 and was characterized as 1-hydroxyphenazine ((1-OH-PHZ) by nuclear magnetic resonance (NMR) spectral analysis. The strain was used as a biocontrol agent against root rot and wilt disease of pyrethrum caused by Rhizoctonia solani. The stain is also reported to increase the growth and biomass of Plantago ovata. The purified compound, 1-hydroxyphenazine, also showed broad-spectrum antagonistic activity towards a range of phytopathogenic fungi, which is the first report of its kind.

Isolation and Purification of Several Substances Produced by Fusarium graminearum and Their Antimicrobial Activities (Fusarium graminearum이 생산하는 몇가지 물질의 분리정제 및 항균 활성)

  • 김병섭;김건우;이종규;이인원;조광연
    • Korean Journal Plant Pathology
    • /
    • v.11 no.2
    • /
    • pp.158-164
    • /
    • 1995
  • 토마토의 엽권에서 분리한 Fusariym graminearum이 분비하는 물질은 벼 도열병균(Pyricularia oryzae)의 여러 종의 식물병원 진균에 대한 항균활성을 나타내었으며, 이러한 활성물질을 PDA에서 본 균을 배양 한 후 chloroform으로 추출하여 분리정제 하였다. HPLC에 의하여 5종류의 활성 물질을 분획하였으며, 그중 1번(F402) 화합물을 벼 도열병균(P. oryzae)을 포함한 22개 식물 병원 진균에 대하여 살균 활성범위를 조사한 결과, 이 화합물은 50$\mu\textrm{g}$/ml 농도에서 Pythium ultimum, Rhizoctonia solani, Sclerotinia sclerotiorum은 전혀 억제하지 못하였으며, Phytophthora spp., Cladosporium fulvum, Fusarium spp., Corynespora cassicola에는 어느 정도의 활성이 있었지만 낮게 나타났고, P. oryzae, Cochliobolus miyabeanus, Alternaria solani는 100% 억제하여 활성이 높게 나타났다. 또한 장내 세균에 대한 활성을 MIC로 비교할 때 Streptococcus pyogenes, Streptococcus faecium에 대하여는 각각 12.5, 25 $\mu\textrm{g}$/ml였고 Staphylococcus aureus는 25-50$\mu\textrm{g}$/ml으로 나타났으며, Pseudomonas aeruginosa, Salmonella typhimurium, Klebsiella aerogenes, Enterobacter cloacae에서는 100$\mu\textrm{g}$/ml 이상으로 활성이 나타나지 않았다. F402를 200$\mu\textrm{g}$/ml의 농도로 직접 살포한 식물체에서의 방제효과는 벼도열병, 벼 깨씨무늬병, 보리 흰 가루병에 대하여는 80%이상이었으나, 벼 잎집무늬마름병, 오이 잿빛곰팡이병, 토마토 역병, 밀 녹병에서는 낮았다.

  • PDF

Antifungfal Activity Against Plant Pathogenic Fungi on Insect Enterobacteriaceae (식물병원성 곰팡이에 대한 곤충장내세균의 항균활성)

  • Oh, San Na;Seo, Mi Ja;Youn, Young Nam;Yu, Yong Man
    • The Korean Journal of Pesticide Science
    • /
    • v.19 no.1
    • /
    • pp.71-79
    • /
    • 2015
  • In order to investigating the effects of antifungal activity of intestinal bacteria obtained from insect, it was identified these bacteria isolated from the gut. In this result, total 49 isolates of intestinal bacteria were identified from 10 kinds of insect species. It was that 4 isolates including Cedecea sp. from Nesidiocoris tenuis, 3 isolates including Enterobacter sp. from Odontotaenius disjunctus, 4 isolates including Acinetobacter sp. from Reticulitermes speratus, 4 isolates including Clavibacter sp. from Riptortus clavatus, 11 isolates including Bacillus sp. from Lema decempunctata, 3 isolates including Enterococcus sp. from Henosepilachna vigintioctopunctata 2 isolates including Staphylococccus sp. from Harmonia axyridis, 5 isolates including Enterobacter asburiae from Popillia mutans, 7 isolates including Aeromonas sp. from Hydrophilus acuminatus, and 7 isolates including Brucella sp. from Anomala octiescostata. In order to investigating antifungal activity against plant-pathogenic fungi, Altanaria solani, Colletotrichum gloeosporioides, Botrytis cinerea, Fusarium oxysporum, Phytophthora capsici, Rhizoctonia solani and Selerotinia sclerotiorum were dual cultured with each 49 gut enterobacteriaceae. As these results showed that many isolates have the antifungal activities including 26 isolates against A. solani, 6 isolates against B. cinerea, 13 isolates against C. gloeosporioides, 11 isolates against F. oxysporum, 17 isolates P. capsici, 2 isolates against R. solani and 2 isolates against S. sclerotiorum. Pseudomonas aeruginosa was showed strong antifungal activity against all of tested plant pathogens. It might be taken a potential for application against plant-pathogenic fungi with useful control agent.