• Title/Summary/Keyword: Rheology properties

Search Result 596, Processing Time 0.024 seconds

The Manufacture of Aluminum Rheology Materials by Spiral Stirring Equipment (나선형 기계 교반 장치를 이용한 Al 합금 레오로지 소재의 제조)

  • Han, S.H.;Bae, J.W.;Kang, C.G.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2007.05a
    • /
    • pp.397-400
    • /
    • 2007
  • Recently, rheology forming technology has been interested in industrial and academic for light weight materials and to solve environmental issues. In this study, the rheology material production equipments were used to be made spiral shape by special design. And the experiment variables established stirring time 0 $\sim$ 1200 sec, stirring velocity 0 $\sim$ 100 rpm and several material temperature of semi - solid states. The rheology materials were made for established experiment conditions then measured mechanical properties. Sequence-production equipments were appended to fabrication system of rheology material for make rheology materials continually. Therefore, the development of sequence-production equipments were demanded for fine grains and for uniform globule shape rheology materials by a specially designed spiral stirrer machine.

  • PDF

A Study on the Rheology Properties of Cement Paste with Variation of Quantity and! Type of Mineral Admixture (광물혼화재의 종류별 함량에 따른 시멘트 페이스트의 유동 특성에 관한 연구)

  • 박춘근;노명현;김학연;이종필;박대효
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2003.05a
    • /
    • pp.107-113
    • /
    • 2003
  • The rheology properties of cement paste with variation of quantity and type of mineral admixture were investigated. The rheology of the paste was assessed by using a HAAKE Rotovisco(RT 20) rheometer having cylindrical serrate spindle. The results were as follows: The viscosity and the yield stress of cement paste were decreased by the only replacement of 10% BFS(blast furnace slag) or the only replacement of 30% FA(fly ash), whereas SF(silica fume) increased them as the replacement quantity was increased. Increasing the dosage of HRWR(high-range water reducer), the rheology properties were improved significantly in cement paste with the replacement of SF. In addition, rheology properties of two ingredient blended pastes, such as BFS(20%)-SF(5%), FA(20%)-SF(5%), were improved more than those of three ingredient blended paste, BFS(20%)-FA(20%)-SF(5%).

  • PDF

Morphology and mechanical properties of LDPE/PS blends prepared by ultrasound-assisted melt mixing

  • Ryu, Joung Gul;Kim, Hyungsu;Kim, Myung Ho;Lee, Jae Wook
    • Korea-Australia Rheology Journal
    • /
    • v.16 no.3
    • /
    • pp.147-152
    • /
    • 2004
  • Ultrasound-assisted melt mixing was applied to blending polystyrene (PS) and low density polyethylene(LDPE). The influence of the ultrasonic irradiation on the morphology and mechanical properties of the blends was investigated. It was observed that the domain sizes of the blend were significantly reduced and phase stability was well sustained even after a thermal treatment. Such morphological feature was consistent with the improvements in mechanical performance of the blends. The desirable results of ultrasonic compatibilization are mainly attributed to the in-situ formation of PS-LDPE copolymers as confirmed by a proper separation experiment. An important relationship between ultrasonic irradiation time and mechanical properties is revealed and an issue on the thermal stability of the blend is discussed.

Reactive blends of poly(butylene terephthalate)/polyamide-6 with ethylene glycidyl methacrylate

  • Han, M.S.;Lim, B.H.;Jung, H. C.;Hyun, J.C.;Kim, S.R.;Kim, W.N.
    • Korea-Australia Rheology Journal
    • /
    • v.13 no.4
    • /
    • pp.169-177
    • /
    • 2001
  • Morphological, thermal, rheological, and mechanical properties of reactive compatabilized blends of poly(butylene terephthalate) (PBT) and Polyamide-6 (PA) containing EGMA copolymer were investigated using scanning electron microscopy (SEM), differential scanning calorimetry (DSC), advanced rheometric expansion system (ARES), and universal testing machine (UTM). From the results of thermal analysis by DSC, the melting point of the 30/70 PBT-PA blend was broadened after EGMA was added in the blends, since the enthalpy of melting of the PBT-PA somewhat decreased with the increase of EGMA content. From this result, it is suggested that the EGMA affected to the crystallization behavior and crystallinity of the PBT-PA blends. From SEM micrographs of the 70/30, 50/50, and 30/70 PBT-PA blends, the droplet size of the 30/70 PBT-PA blend was about 0.8 ${\mu}{\textrm}{m}$ which was smaller than that of the 50/50 and 70/30 PBT-PA blends. The complex viscosity of the 30/70 PBT-PA blend observed to be higher than that of the 50/50 and 70/30 PBT-PA blends. From the results of the morphology and rheological properties for the PBT-PA blends, it is suggested that the compatibility is increased in the 30/70 PBT-PA blend than the 50/50 and 70/30 PBT-PA blends. From the results of mechanical properties, it was found that the tensile strength of the 30/70 PBT-PA blend increased with the increase of EGMA up to 2 phr, while tensile strength of the blend in which EGMA content was higher than 2 phr decreased with the increase of EGMA content. From the results of morphological, thermal, rheological, and mechanical properties for the PBT-PA-EGMA blends, it is suggested that the EGMA could be used as a compatibilization role in the blends.

  • PDF

Emulsion rheology and properties of polymerized high internal phase emulsions

  • Lee, Seong-Jae
    • Korea-Australia Rheology Journal
    • /
    • v.18 no.4
    • /
    • pp.183-189
    • /
    • 2006
  • High internal phase emulsions are highly concentrated emulsion systems consisting of a large volume of dispersed phase above 0.74. The rheological properties of high internal phase water-in-oil emulsions were measured conducting steady shear, oscillatory shear and creep/recovery experiments. It was found that the yield stress is inversely proportional to the drop size with the exponent of values between 1 and 2. Since the oil phase contains monomeric species, microcellular foams can easily be prepared from high internal phase emulsions. In this study, the microcellular foams combining a couple of thickeners into the conventional formulation of styrene and water system were investigated to understand the effect of viscosity ratio on cell size. Cell size variation on thickener concentration could be explained by a dimensional analysis between the capillary number and the viscosity ratio. Compression properties of foam are important end use properties in many practical applications. Crush strength and Young's modulus of microcellular foams polymerized from high internal phase emulsions were measured and compared from compression tests. Of the foams tested in this study, the foam prepared from the organoclay having reactive group as an oil phase thickener showed outstanding compression properties.

An Experimental Study on the Rheology Properties of Cement-Paste Due to Different of Superplasticizer (혼화제 종류에 따른 시멘트 페이스트의 레올로지 특성에 관한 실험적 연구)

  • Ryu, Hee-Jung;Choi, Young-Jun;Kim, Jae-Hun;Kang, Hun;Kim, Wha-Jung
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1998.04a
    • /
    • pp.51-56
    • /
    • 1998
  • The purpose of this study is to investigate and analyze the fluidity and rheology property of superplasticizer which is necessary using for high flowing concrete fluidity establishment, by changing the substitutional ratio of 6 kinds, and examined the fluidity and rheology properties as time goes by. In the result of this study, the fluidity and rheology properties are differently found and on the effects of admixture for the fluidity, F type is superior and A type is lower than others. Besides, F type is the mose superior values in the time goings.

  • PDF

Studies on Rheological Properties of High Solids Coating Colors (I) - Effect of Rheology Modifiers on Viscoelastic Properties -

  • Yoo, Sung-Jong;Cho, Byoung-Uk;Lee, Yong-Kyu
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.44 no.5
    • /
    • pp.39-45
    • /
    • 2012
  • For a fundamental study for high concentration pigment coating, the effects of alkali swellable emulsion (ASE) type rheology modifier and surface adsorption emulsion (SAE) type rheology modifier on both the stability and the viscoelastic behavior of a coating color were elucidated. The coating color prepared with SAE type rheology modifier showed superior thermal and mechanical stability than that with ASE type. In the high concentration and high speed coating process, the mechanical stability of a coating color was a key parameter since both impact force and shear force were increased with the increase of coating color concentration and coating speed, respectively.

Rheological properties of branched polycarbonate prepared by an ultrasound-assisted intensive mixer

  • Kim, Hyung-Su;Lee, Hoo-Seok;Lee, Jae-Wook
    • Korea-Australia Rheology Journal
    • /
    • v.19 no.1
    • /
    • pp.1-5
    • /
    • 2007
  • By combining ultrasonic energy which is essential for the chain scission of polymer molecules and a multifunctional agent (MFA) having double bonds at its ends, we were able to modify the molecular structure of polycarbonate (PC) from linear to a branched structure during melt processing. The three double bonds in chain ends of MFA were expected to act as sites for trapping macroradicals of PC during the course of ultrasound-assisted mixing process. The transformation of molecular structure of PC was confirmed by the measurements of rheological properties of the modified PC. After the ultrasonic irradiation of PC together with MFA, increase in complex viscosities and shear-thinning behavior were observed. The Cole-Cole plot and measurement of extensional viscosities revealed the characteristic features of branched structure with well-defined extensional behavior which is comparable to that of a commercial branched PC.