• Title/Summary/Keyword: Rheocast

Search Result 10, Processing Time 0.023 seconds

Microstructural Change in Rheocast AZ91D Magnesium Alloys with Stirring Rate and Isothermal Stirring Temperature (교반속도 및 등온교반온도에 따른 AZ91D 마그네슘합금 반응고 주조재의 미세조직 변화)

  • Yim, Chang-Dong;Shin, Kwang-Seon
    • Journal of Korea Foundry Society
    • /
    • v.23 no.3
    • /
    • pp.130-136
    • /
    • 2003
  • Rheocasting of AZ91D magnesium alloys yielded the microstructure consisted of the spherical primary particles in the matrix which is different from conventional casting. Rheocast ingots were produced under various processing conditions using batch type rheocaster. Morphology of primary particles was changed from rosette-shape to spherical shape with increasing stirring rate$(V_s)$ and decreasing isothermal stirring temperature$(T_s)$. With increasing $V_s$, more effective shearing between the particles occurred rather than the agglomeration and clustering, so the primary particle size decreased. But with decreasing $T_s$, primary particle size increased mainly due to sintering and partially Ostwald ripening. The sphericity of primary particles increased with increasing $V_s$ and decreasing $T_s$ due to enhanced abrasion among the primary particles. The uniformity of primary particle size increased with increasing Vs and $T_s$.

Effect of Al-5Ti-B on the Microstructure of Rheology Material (Al-5Ti-B가 레오로지 소재의 미세조직에 미치는 영향)

  • Yang Z.;Seo P. K.;Kang C. G.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2005.05a
    • /
    • pp.299-302
    • /
    • 2005
  • Semisolid A356 slurries were prepared by electromagnetic stirring casting and by inoculation of Al-5Ti-B master alloy. As stirring time and addition of Al-5Ti-B are different, the grain size of the primary phase is different. Through the experiment of rheocast in a Buhler horizontal die casting machine, it was found that the finer the equiaxed primary dendrites, the smoother the die filling and better cast quality. Small equiaxed primary dendrite also results in less liquid segregation on the surface.

  • PDF

Microstructural evolution of rheocast Al-6.2wt.%Si alloy with isothermal stirring (Al-6.2wt.%Si 합금의 등온교반시간에 따른 미세조직변화)

  • Lee, Jung-Ill;Park, Ji-Ho;Kim, Gyeung-Ho;Lee, Ho-In
    • Journal of Korea Foundry Society
    • /
    • v.15 no.5
    • /
    • pp.514-522
    • /
    • 1995
  • The microstructural evolution with isothermal stirring during semi-solid state processing of hypoeutectic Al-6.2wt%Si alloy was studied. Substructure of the individual primary solid particle in the slurry was investigated through transmission electron microscopy(TEM). Formation of subgrain boundaries on the rheocast Al-6.2wt%Si alloy is observed and the misorientation between the grains is shown typically under 2 degrees by analyzing selected area diffraction (SAD) and convergent beam electron diffraction (CBED) patterns. The existence of high angle grain boundaries are also observed in the alloy. Based upon these observations, mechanisms for the primary particles fragmentation are considered. With isothermal stirring, the dislocation density increases, and the evolution of dislocation cell structure takes place, which is interpreted as a process of achieving uniform deformation by dynamic recovery under applied shear stress.

  • PDF

Forming Process and Mechanical Properties of Grain Controlled Rheology Material (결정립 제어 레오로지 소재의 성형공정과 기계적 성질)

  • Seo P. K.;Kang C. G.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2005.05a
    • /
    • pp.463-466
    • /
    • 2005
  • The microstructure and mechanical properties of rheocast A356 aluminum alloy by electromagnetic stirring are studied. In the electromagnetic stirring, main parameters are stirring current and stirring time. Stirring current is ranged from 0 A to 60 A, and stirring time is 20, 40, and 60 sec. In the rheocasting, injection velocity and applied pressure are changed. In this paper, the effect of stirring current and stirring time on the morphology and mechanical properties are investigated and analyzed.

  • PDF

Measurement of Lattice Parameter of Primary Si crystal in Rheocast Hypereutectic Al-Si Alloy by Convergent Beam Electron Diffraction Technique (수렴성빔 전자회절법을 이용한 리오캐스팅시킨 과공정 Al-Si합금에서 실리콘초정의 격자상수 측정)

  • Lee, Jung-Ill;Kim, Gyeung-Ho;Lee, Ho-In
    • Applied Microscopy
    • /
    • v.25 no.3
    • /
    • pp.99-107
    • /
    • 1995
  • The morphological changes of primary solid particles as a function of process time on hypereutectic Al-15.5wt%Si alloy during semi-solid state processing with a shear rate of $200s^{-1}$ are studied. In this alloy, it was observed that primary Si crystals are fragmented at the early stage of stirring and morphologies of primary Si crystals change from faceted to spherical during isothermal shearing for 60 minutes. To understand the role of Al dissolved in the primary Si crystal by shear stress at high temperature, lattice parameters of the primary Si crystals are determined as a variation of high order Laue zone(HOLZ) line positions measured from convergent beam electron diffraction(CBED) pattern. The lattice parameter of the primary Si crystal in the rheocast Al-15.5wt%Si alloy shows tensile strain of about 5 times greater than that of the gravity casting. Increase of the lattice parameter by rheocasting is due to the increased amount of Al dissolved in the primary Si crystal accelerated by shear stress at high temperature. The amounts of solute Al in the primary Si crystal are measured quantitatively by EPMA method to confirm the CBED analysis.

  • PDF

Studies on Grain Size Refinement for Rheocasting of Hypereutectic Al-18% Si by Using Sieve Type Mechanical Stirrer (과공정 Al-18% Si 합금의 레올로지 성형시 기계적 교반을 이용한 입자 미세화 연구)

  • 강용기;박진욱;강성수;강충길;문영훈
    • Transactions of Materials Processing
    • /
    • v.9 no.4
    • /
    • pp.389-394
    • /
    • 2000
  • The studies on gram size refinement for rheocast processing of hypereutectic Al-18%Si alloys have been investigated in the present study. To increase the efficiency of mechanical stirring, sieve type stirrer are newly designed and implemented for rheocasting of hypereutectic Al-18%Si alloy. Mechanical stirring of semi-solid slurry by using sieve type mechanical stirrer results in morphological changes of the primary Si particles, from angular rod shape to near spherical shape and uniform distribution of proeutectic Si. The remarkable spheroidization of Primary Si Particles and distributional uniformity of proeutectic Si show well the efficiency of sieve type mechanical stirring method which can accelerate the coalescence-fracture-wear of the individual particles by strong turbulent flow between lattices during rotation of sieve type stirrer.

  • PDF

Investigation on Age-hardening characteristic of thixo and rheocast by using Nano/Micro-probe Technology (나노/마이크로 프로브 기술을 통한 틱소/레오 캐스트의 시효경화 특성 조사)

  • Cho, S.H.;Lee, C.S.;Kang, C.G.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2006.05a
    • /
    • pp.322-325
    • /
    • 2006
  • The nano/microstructure and mechanical properties of the eutectic regions in thixo and rheo cast A356 alloy parts were investigated using nano/micro-indentation and mechanical scratching, combined with optical microscopy and atomic force microscope (AFM).Most eutectic Si crystals in the A356 alloy showed a modified morphology as fine-fibers, however Si particles of network in eutectic region was formed quickly with aging time increase in thixo-cast. The aging responses of the eutectic regions in both the thixo and rheo cast A356 alloys aged at $150^{\circ}C$ for different times (0, 2, 4, 8, 10, 16, 24, 36, and 72 h) were investigated. Both Vickers hardness ($H_V$) and indentation ($H_{IT}$) test results showed almost the same trend of aging curves, the peak was obtained at the same aging time of 10 h.

  • PDF

Microstructure and Characteristic of Rheocast Al-6.2wt%Si Alloy (Al-6.2wt%Si합금의 리오캐스트 조직과 특성)

  • Lee, Jung-Il;Park, Ji-Ho;Lee, Ho-In;Kim, Moon-Il
    • Journal of Korea Foundry Society
    • /
    • v.14 no.5
    • /
    • pp.438-446
    • /
    • 1994
  • The effect of various thermomechanical treatments on the structure and rheological behaviour of Al-6.2wt%Si alloy in its solidification range were investigated using a Searle type high temperature viscometer. During continuous cooling, the viscosity increases gradually with increasing fraction of solidified alloy, until a critical fraction of solidified alloy is reached above which the viscosity sharply increases. The viscosity of the slurry, at a given volume fraction wolid, decreased with increasing shear rate. The size and morphology of primary solid particles during stirring is influenced strongly by shear rates, cooling rates, volume fraction and stirring time of solid. Morphological changes during stirring as a function of solid volume fractions, shear rate and processing time were also reported. In this study, the size of primary solid particles in these alloys consistently increases and the it`s aspect ratio decrease with the increase in fraction solid and decrease in shear rate. Crystal morphology changes from rosette type to spheroid type with the increase in shear rate and solid fraction.

  • PDF

Microstructural evolution of primary solid particles and mechanical properties of AI-Si alloys by rheocasting (AI-Si계 리오캐스팅합금의 초정입자의 응고조직 및 기계적성질)

  • Lee, J.I.;Lee, H.I.;Ryoo, Y.H.;Kim, D.H.;Kim, M.I.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.7 no.4
    • /
    • pp.244-252
    • /
    • 1994
  • The morphological changes of primary solid particles as a fuction of process time on Al-Si alloys during semi-solid state processing with a shear rate of 200s were studied. In hypereutectic Al-15.5wt%Si alloy, it was observed that primary Si crystals are fragmented in the early stage of stirring and morphologies of primary Si crystals change from faceted to spherical during isothermal shearing for 60 minutes. In quaternary Al-12.5wt%Si-2.9wt%Cu-0.7wt%Mg alloy system, it was observed both primary silicon and ${\alpha}$-alumunum particles. Microstructural evolution of primary Si crystals was similar to that of the hypereutectic Al-Si alloy but equiaxed ${\alpha}$-Al dendrites are broken into nearly spherical at the early stage of shearing and later stage of the isothermal shearing ${\alpha}$- Al particles are slightly coarsoned by Ostwald ripening. Mechanical properties of Al-Si-Cu-Mg alloy were compared to those from other processes (squeeze casting and gravity casting). After T6 heat treatment, comparable values of hardness were obtained while slightly lower compressive strength values were observed in rheocast alloy. The elongation, on the other hand, exhibited significant increasement of 15% over gravity cast alloy.

  • PDF

Ultrasonic Vibration and Rheocasting for Refinement of Mg-Zn-Y Alloy Reinforced with LPSO Structure

  • Lu, Shulin;Yang, Xiong;Hao, Liangyan;Wu, Shusen;Fang, Xiaogang;Wang, Jing
    • Metals and materials international
    • /
    • v.24 no.6
    • /
    • pp.1315-1326
    • /
    • 2018
  • In this work, ultrasonic vibration (UV) and rheo-squeeze casting was first applied on the Mg alloy reinforced with long period stacking ordered (LPSO) structure. The semisolid slurry of Mg-Zn-Y alloy was prepared by UV and processed by rheosqueeze casting in succession. The effects of UV, Zr addition and squeeze pressure on microstructure of semisolid Mg-Zn-Y alloy were studied. The results revealed that the synergic effect of UV and Zr addition generated a finer microstructure than either one alone when preparing the slurries. Rheo-squeeze casting could significantly refine the LPSO structure and ${\alpha}-Mg$ matrix in $Mg_{96.9}Zn_1Y_2Zr_{0.1}$ alloy without changing the phase compositions or the type of LPSO structure. When the squeeze pressure increased from 0 to 400 MPa, the block LPSO structure was completely eliminated and the average thickness of LPSO structure decreased from 9.8 to $4.3{\mu}m$. Under 400 MPa squeeze pressure, the tensile strength and elongation of the rheocast $Mg_{96.9}Zn_1Y_2Zr_{0.1}$ alloy reached the maximum values, which were 234 MPa and 17.6%, respectively, due to its fine ${\alpha}-Mg$ matrix (${\alpha}1-Mg$ and ${\alpha}2-Mg$ grains) and LPSO structure.