• Title/Summary/Keyword: Rg5

Search Result 521, Processing Time 0.03 seconds

Ginsenoside Rg5 promotes muscle regeneration via p38MAPK and Akt/mTOR signaling

  • Ryuni Kim;Jee Won Kim;Hyerim Choi;Ji-Eun Oh;Tae Hyun Kim;Ga-Yeon Go;Sang-Jin Lee;Gyu-Un Bae
    • Journal of Ginseng Research
    • /
    • v.47 no.6
    • /
    • pp.726-734
    • /
    • 2023
  • Background: Skeletal muscles play a key role in physical activity and energy metabolism. The loss of skeletal muscle mass can cause problems related to metabolism and physical activity. Studies are being conducted to prevent such diseases by increasing the mass and regeneration capacity of muscles. Ginsenoside Rg5 has been reported to exhibit a broad range of pharmacological activities. However, studies on the effects of Rg5 on muscle differentiation and growth are scarce. Methods: To investigate the effects of Rg5 on myogenesis, C2C12 myoblasts were induced to differentiate with Rg5, followed by immunoblotting, immunostaining, and qRT-PCR for myogenic markers and promyogenic signaling (p38MAPK). Immunoprecipitation confirmed that Rg5 increased the interaction between MyoD and E2A via p38MAPK. To investigate the effects of Rg5 on prevention of muscle mass loss, C2C12 myotubes were treated with dexamethasone to induce muscle atrophy. Immunoblotting, immunostaining, and qRT-PCR were performed for myogenic markers, Akt/mTOR signaling for protein synthesis, and atrophy-related genes (Atrogin-1 and MuRF1). Results: Rg5 promoted C2C12 myoblast differentiation through phosphorylation of p38MAPK and MyoD/E2A heterodimerization. Furthermore, Rg5 stimulated C2C12 myotube hypertrophy via phosphorylation of Akt/mTOR. Phosphorylation of Akt induces FoxO3a phosphorylation, which reduces the expression of Atrogin-1 and MuRF1. Conclusion: This study provides an understanding of how Rg5 promotes myogenesis and hypertrophy and prevents dexamethasone-induced muscle atrophy. The study is the first, to the best of our knowledge, to show that Rg5 promotes muscle regeneration and to suggest that Rg5 can be used for therapeutic intervention of muscle weakness and atrophy, including cancer cachexia.

The Conversion of Ginsenosides by Extrusion Molding (압출성형에 의한 ginsenoside의 변환)

  • Ryu, Jae-Hyung;Li, Chun-Ying;Ahn, Moon-Sub;Kim, Jang-Won;Kang, Wie-Soo;Rhee, Hae-Ik
    • Applied Biological Chemistry
    • /
    • v.51 no.2
    • /
    • pp.114-118
    • /
    • 2008
  • Ginseng treated with several treatment conditions of various acids to search hydrolysates on the basis of increased biological activity and modified structure. In the result of acid treatment, the conversion rate of ginsenoside Rg3, Rk1 and Rg5 was highest when ginseng treated with citric acid. After added citric acid to ginseng extract, boiled at l00$^{\circ}C$ for 1 hour and add enzyme, which is examined change by time. It compared with group which did not treated acid. Two groups became difference according to enzyme but the generation rate of ginsenoside Rg3, Rk1 and Rg5 did not show difference greatly. Also, the generation rate of ginsenoside Rg3, Rk1 and Rg5 by time passes did not show difference. The generation rate of ginsenoside Rg3, Rk1 and Rg5 increased when increased acid concentration, temperature and time. We did exclusion molding to shorten treatment time. In the result of ginseng treated with citric acid of various concentrations at various temperatures as time passes by extrusion molding, the generation rate of ginsenoside Rg3, Rk1 and Rg5 was highest when ginseng treated with 3% citric acid at l60$^{\circ}C$ for 20 minutes. In addition, total saponin amount of ginseng treated with 3% citric acid at 160$^{\circ}C$ for 20 minutes was about 11% higher than ginseng heated at 120$^{\circ}C$ for 3 hours. These results indicated that our exclusion molding process more effective, compared to traditional red ginseng manufacturing process.

Changes in the Functionality of Cheonggukjang During Fermentation Supplemented with Angelica gigas, Rehmanniae Radix, and Red ginseng (당귀.지황.홍삼 첨가에 따른 발효 청국장의 기능성 변화 연구)

  • Choi, Eun-Ji;Lee, Jung-Sook;Chang, Hung-Bae;Lee, Mee-Sook;Jang, Hae-Dong;Kwon, Young-In
    • Microbiology and Biotechnology Letters
    • /
    • v.38 no.4
    • /
    • pp.467-474
    • /
    • 2010
  • Cheonggukjang is one of the traditional fermented soy-based foods in Korean diets. Studies in cell cultures, humans have revealed anti-hypertension, anti-stress, anticancer, antioxidant, immune enhancing effects. Angelica gigas, Rehmanniae radix, and Red ginseng are popular medicinal plants and widely used for oriental medicine. In this study a strategy had been developed to mobilize beneficial phenolics from Angelica gigas, Rehmanniae radix, and Red ginseng combined with fermented soy by Cheonggukjang fermentation for antioxidant and Type II diabetes management. The quality and functional characteristics of Chenggukjang fermented with Angelica gigas, Rehmanniae radix and Red ginseng. Cheonggukjang (CKJ), Angelica gigas Cheonggukjang (CKJ-DD), Rehmanniae radix Cheonggukjang (CKJ-RG), Angelica gigas and Rehmanniae radix Cheonggukjang (CKJ-DD+RG) and Red ginseng Cheonggukjang (CKJ-RED) were evaluated. The mobilized phenolic profile was evaluated for antioxidant activity and the potential to inhibit ${\alpha}$-amylase linked to hyperglycaemia. This research has important implications for the development of functional soy-based-fermented foods enriched with Angelica gigas, Rehmanniae radix and Red ginseng phenolics for oxidative stress - induced diabetic complications. Furthermore, Hunter's color values of 5 types cheonggukjang, lightness (L-values), redness (a-values) and yellowness (b-values) were evaluated. Free amino acid content of CKJ-RED (0.993 mg/gd. w.) showed higher than that of CKJ (0.205 mg/g-d.w.).

Anxiolytic-like Effects of Panax ginseng on the Elevated Plus-maze Model in Mice

  • CHA Hwa-Young;SEO Jeong-Ju;PARK Jeong-Hill;EUN Jae-Soon;LEE Seung-Ho;HWANG Bang-Yeon;HONG Jin-Tae;OH Ki-Wan
    • Biomolecules & Therapeutics
    • /
    • v.13 no.3
    • /
    • pp.156-164
    • /
    • 2005
  • This study was performed to investigate the anxiolytic-like effects Panax ginseng in mice using the elevated plus-maze model. Furthermore, the anxiolytic-like effects of Panax ginseng were compared to a known active anxiolytic drug, diazepam. Ginseng total saponin (GTS, 100 mg/kg) from red ginseng (RG), sun ginseng (SG) total extract (50 mg/kg), butanol fraction of SG(25 and 50 mg/kg) and ginsenosides ($Rb_1,\;Rg_1,\;and\;Rg_5$ and Rk mixture) significantly increased the number of open arm entries and the time spent on the open arm, compared with that of control. However, Red ginseng (RG) total extract (l00 mg/kg), GTS (25, 50 mg/kg), SG total extract (25 mg/kg) and ginsenosides ($Rg_{3}-R\;and\;Rg_{3}-S$) did not increase the number of open arm entries and the time spent on the open arm. On the other hand, butanol fraction of RG (l00 mg/kg), total extract of SG (50 mg/kg), butanol fraction of SG (50 mg/kg), ginsenosides ($Rb_{1},\;and\;Rg_{5}$ and Rk mixture) decreased the locomotor activity, in a similar fashion to diazepam. These data support that ginseng has the anxiolytic-like effects and the anxiolytic potential of SG was stronger than that of RG. Ginsenosides $Rb_{1},\;Rg_{1},\;and\;Rg_{5}$ and Rk mixture play important role on the anxiolytic-like effects of Panax ginseng. We provide evidence that ginseng and some ginsenosides may be useful for the treatment of anxiety.

Protein kinase C-mediated Stimulatory Effect of $Ginsenoside-{Rg_1}$ on the Proliferation of SK-HEP-1 (SK-HEP-1 사람 간세포에서 Protein kinase C 신호전달체계를 통한 $인삼사포닌-{Rg_1}$의 DNA 합성 촉진 효과)

  • 공희진;이광열;정은아;이유희;김신일;이승기
    • YAKHAK HOEJI
    • /
    • v.39 no.6
    • /
    • pp.661-665
    • /
    • 1995
  • Ginsenoside-Rg$_{1}$(G-Rg$_{1}$) has been shown to stimulate DNA synthetic activity in SK-HEP-1 cells. This study was therefore designed to determine in SK-HEP-1 cells whether the stimulatory effect of G-Rg$_{1}$ may be mediated by protein kinase C (PKC) which is known to play a key role in the signal transduction pathway leading to the cell proliferation. Using the tn situ PKC assay method, the PKC enzyme activity was determined in SK-HEP-1 cell cultures in response to G-Rg$_{1}$ at 3*10$^{-5}$ M or phorbol 12-myristate 13-acetate(PMA) at 10$^{-6}$ M which in the enzyme activity by 1.5- and 7-fold, respectively. Furthermore, G-Rg$_{1}$, was also able to synergistically increase the enzyme activity by 11-fold m the cell cultures in the presence of PMA. These stimulatory effects of G-Rg$_{1}$ or PMA on the DNA synthetic activity and the PKC activity were ablished by a specific PKC inhibitor, GF109203X. These results suggest that the stimulatory effect of G-Rg$_{1}$ on the DNA synthetic activity may be partly due to stimulation of PKC-mediated signal transduction pathway leading to the proliferation of SK-HEP-1 cells.

  • PDF

The Change of Ginsenoside Composition in White Ginseng and Fine White Ginseng Extract by the Microwave and Vinegar Process (백삼 및 백미삼 추출물의 초단파 및 식초 처리에 의한 인삼 사포닌 성분 변화)

  • Jo, Hee Kyung;Im, Byung Ok;Ko, Sung Kwon
    • Korean Journal of Pharmacognosy
    • /
    • v.45 no.1
    • /
    • pp.77-83
    • /
    • 2014
  • The purpose of this study is to develop a new preparation process of ginseng extracts having high concentrations of ginsenoside $Rg_3$, $Rg_5$ and $Rk_1$, a special component of Red ginseng. Chemical transformation from ginseng saponin glycosides to prosapogenin was analyzed by the HPLC. Extracts of White ginseng (Panax ginseng) and Fine White ginseng were processed under several treatment conditions including microwave and vinegar (about 14% acidity) treatments. Results of those treatments showed that the quantity of ginsenoside $Rg_3$ increased by over 0.6% at 4 minutes of pH 2~4 vinegar and microwave treatments. The results of processing with MWG-4 indicate that the Microwave and vinegar processed white ginseng extracts (about 14% acidity) that had gone through 4-minute treatments were found to contain the largest amount of ginsenoside $Rg_3$ (0.626%), $Rg_5$ (0.514%) and $Rk_1$ (0.220%). Results of treatments with MFWG-5 showed that the Fine White ginseng extracts that had been processed with microwave and vinegar (about 14% acidity) for 5 minutes were found to contain the largest amount of ginsenoside $Rg_3$ (4.484%), $Rg_5$ (3.192%) and $Rk_1$ (1.684%). It is thought that such results provide basic information in preparing White ginseng and Fine White ginseng extracts with functionality enhanced.

Ginsenoside Rg1 Induces Apoptosis through Inhibition of the EpoR-Mediated JAK2/STAT5 Signalling Pathway in the TF-1/Epo Human Leukemia Cell Line

  • Li, Jing;Wei, Qiang;Zuo, Guo-Wei;Xia, Jing;You, Zhi-Mei;Li, Chun-Li;Chen, Di-Long
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.6
    • /
    • pp.2453-2459
    • /
    • 2014
  • Ginsenoside Rg1 is one effective anticancer and antioxidant constituent of total saponins of Panax ginseng (TSPG), which has been shown to have various pharmacological effects. Our previous study demonstrated that Rg1 had anti-tumor activity in K562 leukemia cells. The aim of this study was designed to investigate whether Rg1 could induce apoptosis in TF-1/Epo cells and further to explore the underlying molecular mechanisms. Here we found that Rg1 could inhibit TF-1/Epo cell proliferation and induce cell apoptosis in vitro in a concentration and time dependent manner. It also suppressed the expression of EpoR on the surface membrane and inhibited JAK2/STAT5 pathway activity. Rg1 induced up-regulation of Bax, cleaved caspase-3 and C-PAPR protein and down-regulation of Bcl-2 and AG490, a JAK2 specific inhibitor, could enhance the effects of Rg1. Our studies showed that EpoR-mediated JAK2/STAT5 signaling played a key role in Rg1-induced apoptosis in TF-1/Epo cells. These results may provide new insights of Rg1 protective roles in the prevention a nd treatment of leukemia.

Effects of Ginsenoside Rg3 Epimers on Swine Coronary Artery Contractions

  • Kim, Jong-Hoon;Nah, Seung-Yeol
    • Journal of Ginseng Research
    • /
    • v.29 no.3
    • /
    • pp.119-125
    • /
    • 2005
  • The previous reports demonstrated that ginseng saponins, active ingredient of Panax ginseng, inhibited blood vessel contraction induced by various hormones or high $K^+$. Recently, we demonstrated that 20(R)- and 20(S)-ginsenoside $Rg_3$. regulate ion channel activities with differential manners. The aim of this study was to examine whether ginsenoside $Rg_3$ isomers also show differential effects on swine coronary artery contractionresponses induced by high $K^+$, serotonin (5-HT) or acetylcholine. Treatment of 20(S)- but not 20(R)-ginsenoside $Rg_3$ caused a concentration-dependent relaxation of coronary artery contracted by 25mM KCI. 20(S)- and 20(R)-ginsenoside $Rg_3$ induced significant relaxations of coronary artery contraction induced by 5-HT $(3{\mu}M)$ in the presence of endothelium with concentration-dependent manner and, also in the absence of endothelium only 20(S)-ginsenoside $Rg_3$ induced a strong Inhibition of coronary artery contraction induced by 5-HT in a concentration-dependent manner. 20(S)-ginsenoside $Rg_3$ caused relaxation of coronary artery in the absence and presence of endothelium. In contrast, treatment of 20(S)- and 20(R)-ginsenoside $Rg_3\;(100{\mu}M)$ did not show significant inhibition of coronary artery contraction induced by acetylcholine $(0.01\;to\;30{\mu}M)$ in the presence of endothelium, whereas both isomers caused significant inhibition of coronary artery contraction induced by acetylcholine $(0.01\;to\;30{\mu}M)$ in the absence of endothelium in a concentration-dependent manner. These findings indicate that 20(S)-or 20(R)-ginsenoside $Rg_3$ exhibits differential relaxation eff3cts of swine coronary artery contractions caused by high $K^+$, acetylcholine, and 5-HT treatment and that this differential vasorelaxing effects of ginsenoside $Rg_3$ isomers also might be dependent on endothelium.

Clinical Effects of Rg3 Ginseng Pharmacopuncture for Dry Eye Syndrome in Six Case Reports (안구건조증에 대한 Rg3진센약침의 임상적 효과 6례 보고)

  • Kang, Eun-jin;Park, Eun-young;Kim, Kyoung-min
    • The Journal of Internal Korean Medicine
    • /
    • v.39 no.5
    • /
    • pp.929-938
    • /
    • 2018
  • Objectives: To report the clinical application and effects of Rg3 ginseng (ginseng radix) pharmacopuncture in patients with dry eye syndrome. Methods: Six patients who suffered from dry eye syndrome were treated with Rg3 ginseng pharmacopuncture for 4 weeks. The Ocular Surface Disease Index (OSDI) was used twice, at the start and end of treatment, to analyze the results. Results: After treatment with Rg3 ginseng pharmacopuncture, OSDI scores were improved in all six patients. Conclusion: Rg3 ginseng pharmacopuncture is an effective treatment for patients with the symptoms of dry eye syndrome.

Metabolite profiles of ginsenosides Rk1 and Rg5 in zebrafish using ultraperformance liquid chromatography/quadrupole-time-of-flight MS

  • Shen, Wenwen;Wei, Yingjie;Tang, Daoquan;Jia, Xiaobin;Chen, Bin
    • Journal of Ginseng Research
    • /
    • v.41 no.1
    • /
    • pp.78-84
    • /
    • 2017
  • Background: In the present study, metabolite profiles of ginsenosides Rk1 and Rg5 from red ginseng or red notoginseng in zebrafish were qualitatively analyzed with ultraperformance liquid chromatography/quadrupole-time-of-flight MS, and the possible metabolic were pathways proposed. Methods: After exposing to zebrafish for 24 h, we determined the metabolites of ginsenosides Rk1 and Rg5. The chromatography was accomplished on UPLC BEH C18 column using a binary gradient elution of 0.1% formic acetonitrile-0.1% formic acid water. The quasimolecular ions of compounds were analyzed in the negative mode. With reference to quasimolecular ions and MS2 spectra, by comparing with reference standards and matching the empirical molecular formula with that of known published compounds, and then the potential structures of metabolites of ginsenosides Rk1 and Rg5 were acquired. Results: Four and seven metabolites of ginsenoside Rk1 and ginsenoside Rg5, respectively, were identified in zebrafish. The mechanisms involved were further deduced to be desugarization, glucuronidation, sulfation, and dehydroxymethylation pathways. Dehydroxylation and loss of C-17 residue were also metabolic pathways of ginsenoside Rg5 in zebrafish. Conclusion: Loss of glucose at position C-3 and glucuronidation at position C-12 in zebrafish were regarded as the primary physiological processes of ginsenosides Rk1 and Rg5.