• 제목/요약/키워드: Rg5

검색결과 521건 처리시간 0.03초

The Chemical and 1,1-Diphenyl-2-Picrylhydrazyl Radical Scavenging Activity Changes of Ginsenosides Rb1 and Rg1 by Maillard Reaction

  • Yamabe, Noriko;Lee, Jin-Gyun;Lee, Yong-Jae;Park, Chan-Hum;Kim, Hyun-Young;Park, Jeong-Hill;Yokozawa, Takako;Kang, Ki-Sung
    • Journal of Ginseng Research
    • /
    • 제35권1호
    • /
    • pp.60-68
    • /
    • 2011
  • The chemical and 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging activity changes of ginsenoside $Rb_1$-glycine and ginsenoside $Rg_1$-glycine mixtures by Maillard reaction were investigated to identify the role of Maillard reaction in the increased antioxidant activity of ginseng by heat-processing. The DPPH radical scavenging activity of $Rg_1$-glycine mixture was more strongly increased by heat-processing than that of $Rb_1$-glycine mixture. From the analyses of ginsenosides, $Rb_1$ was gradually changed into 20(S)-$Rg_3$, 20(R)-$Rg_3$, $Rk_1$ and $Rg_5$ by heat-processing. $Rg_1$ was gradually changed into 20(S)-$Rh_1$, 20(R)-$Rh_1$, $Rk_3$ and $Rh_4$ by heat-processing. However, the generation of these less-polar ginsenosides was not related to the increased DPPH radical scavenging activity of $Rb_1$-glycine and $Rg_1$-glycine mixtures because their DPPH radical scavenging activities were already significantly increased when dried at $50^{\circ}C$, which temperature induce no structural changes of ginsenosides. In the comparison of browning compound levels of $Rg_1$-glycine and $Rb_1$-glycine mixtures, the extents of Maillard reaction were positively correlated with their increased free radical scavenging activities. Based on the chemical and DPPH radical scavenging activity changes of $Rg_1$-glycine and $Rb_1$-glycine mixtures by heat-processing, we clearly identified that the increased free radical scavenging activity of ginsenoside is mediated by the Maillard reaction between sugar moiety of ginsenoside and amino acid.

Risk-Scoring System for Prediction of Non-Curative Endoscopic Submucosal Dissection Requiring Additional Gastrectomy in Patients with Early Gastric Cancer

  • Kim, Tae-Se;Min, Byung-Hoon;Kim, Kyoung-Mee;Yoo, Heejin;Kim, Kyunga;Min, Yang Won;Lee, Hyuk;Rhee, Poong-Lyul;Kim, Jae J.;Lee, Jun Haeng
    • Journal of Gastric Cancer
    • /
    • 제21권4호
    • /
    • pp.368-378
    • /
    • 2021
  • Purpose: When patients with early gastric cancer (EGC) undergo non-curative endoscopic submucosal dissection requiring gastrectomy (NC-ESD-RG), additional medical resources and expenses are required for surgery. To reduce this burden, predictive model for NC-ESD-RG is required. Materials and Methods: Data from 2,997 patients undergoing ESD for 3,127 forceps biopsy-proven differentiated-type EGCs (2,345 and 782 in training and validation sets, respectively) were reviewed. Using the training set, the logistic stepwise regression analysis determined the independent predictors of NC-ESD-RG (NC-ESD other than cases with lateral resection margin involvement or piecemeal resection as the only non-curative factor). Using these predictors, a risk-scoring system for predicting NC-ESD-RG was developed. Performance of the predictive model was examined internally with the validation set. Results: Rate of NC-ESD-RG was 17.3%. Independent pre-ESD predictors for NC-ESD-RG included moderately differentiated or papillary EGC, large tumor size, proximal tumor location, lesion at greater curvature, elevated or depressed morphology, and presence of ulcers. A risk-score was assigned to each predictor of NC-ESD-RG. The area under the receiver operating characteristic curve for predicting NC-ESD-RG was 0.672 in both training and validation sets. A risk-score of 5 points was the optimal cut-off value for predicting NC-ESD-RG, and the overall accuracy was 72.7%. As the total risk score increased, the predicted risk for NC-ESD-RG increased from 3.8% to 72.6%. Conclusions: We developed and validated a risk-scoring system for predicting NC-ESD-RG based on pre-ESD variables. Our risk-scoring system can facilitate informed consent and decision-making for preoperative treatment selection between ESD and surgery in patients with EGC.

Effects of intrauterine growth restriction during late pregnancy on the cell growth, proliferation, and differentiation in ovine fetal thymuses

  • Zi, Yang;Ma, Chi;He, Shan;Yang, Huan;Zhang, Min;Gao, Feng;Liu, Yingchun
    • Animal Bioscience
    • /
    • 제35권7호
    • /
    • pp.989-998
    • /
    • 2022
  • Objective: This study investigated the effects of intrauterine growth restriction (IUGR) during late pregnancy on the cell growth, proliferation, and differentiation in ovine fetal thymuses. Methods: Eighteen time-mated Mongolian ewes with singleton fetuses were allocated to three groups at d 90 of pregnancy: restricted group 1 (RG1, 0.18 MJ ME/body weight [BW]0.75/d, n = 6), restricted group 2 (RG2, 0.33 MJ ME/BW0.75/d, n = 6) and control group (CG, ad libitum, 0.67 MJ ME/BW0.75/d, n = 6). Fetuses were recovered at slaughter on d 140. Results: The G0/G1 phase cell number in fetal thymus of the RG1 group was increased but the proliferation index and the expression of proliferating cell nuclear antigen (PCNA) were reduced compared with the CG group (p<0.05). Fetuses in the RG1 group exhibited decreased growth hormone receptor (GHR), insulin-like growth factor 2 receptor (IGF-2R), and their mRNA expressions (p<0.05). For the RG2 fetuses, there were no differences in the proliferation index and PCNA expression (p>0.05), but growth hormone (GH) and the mRNA expression of GHR were lower than those of the CG group (p<0.05). The thymic mRNA expressions of cyclin-dependent protein kinases (CDKs including CDK1, CDK2, and CDK4), CCNE, E2-factors (E2F1, E2F2, and E2F5) were reduced in the RG1 and RG2 groups (p<0.05), and decreased mRNA expressions of E2F4, CCNA, CCNB, and CCND were occurred in the RG1 fetuses (p<0.05). The decreased E-cadherin (E-cad) as a marker for epithelial-mesenchymal transition (EMT) was found in the RG1 and RG2 groups (p<0.05), but the OB-cadherin which is a marker for activated fibroblasts was increased in fetal thymus of the RG1 group (p<0.05). Conclusion: These results indicate that weakened GH/IGF signaling system repressed the cell cycle progression in G0/G1 phase in IUGR fetal thymus, but the switch from reduced E-cad to increased OB-cadherin suggests that transdifferentiation process of EMT associated with fibrogenesis was strengthened. The impaired cell growth, retarded proliferation and modified differentiation were responsible for impaired maturation of IUGR fetal thymus.

홍삼의 생체 내 사이토카인 분비에 대한 면역조절효과 (Immunomodulating Effects of Red Ginseng on the Regulation of Cytokine Release in vivo)

  • 손은화;윤재웅;구현정;박대원;정용준;남궁승;한효상;강세찬
    • 한국자원식물학회지
    • /
    • 제25권5호
    • /
    • pp.578-585
    • /
    • 2012
  • 홍삼의 6주간의 복강투여가 생체 내 면역계에 미치는 영향을 알아보기 위하여 면역계를 구성하는 주요 장기인 비장과 흉선의 무게변화와 성숙된 B세포와 T세포가 많이 분포되어 있는 비장세포를 배양하여 mitogen에 대한 비장세포의 세포증식능력을 연구하였다. 또한, 생체내 투여되는 홍삼이 면역반응의 매개역할을 하는 분비성 사이토카인의 조절 양상을 확인하기 위하여 생쥐의 혈청에서 분리한 사이토카인의 생성변화를 측정하였다. 연구결과 홍삼의 투여는 비장과 흉선의 무게를 증가시켰고, 비장세포내의 B세포와 T세포의 증식능력에도 유의적인 효과를 나타내었다. 혈청 내 분비된 T세포, B세포 및 대식세포가 분비하는 사이토카인의 농도변화에서도 홍삼 투여군은 면역계를 활성화시키는 IFN-${\gamma}$, TNF-${\alpha}$, IL-2, IL-6 및 IL-12의 분비량을 모두 증가시켰으며, 면역억제성 사이토카인으로 알려진 IL-10의 분비변화에는 영향을 미치지 않았다. 이와 같은 결과는 홍삼의 투여가 면역 반응계 전반을 조절하는 사이토카인의 생성에 영향을 미치며 모두 면역계를 활성화시키는 방향으로 작용시키는 것을 의미한다. 특히, 흉선과 비장의 무게지수가 증가되었다는 것은 세포증식 등의 변화에 영향을 미침으로써 면역계를 활성화시키는 것으로 생각되며, 특히 흉선의 무게 증가와 ConA에 대한 T세포 증식능력의 유의성 변화 및 T세포가 분비하는 IL-2, IFN-${\gamma}$ 등의 사이토카인의 증가는 홍삼의 생체 내 투여가 T세포의 활성화에 크게 영향을 미치는 것으로 사료된다.

Effects of Ginseng Saponins in Energy Metabolism, Memory, and Anti-neurotoxicity

  • Wang Lawrence C.H.;Lee Tze-fun
    • 고려인삼학회:학술대회논문집
    • /
    • 고려인삼학회 2002년도 학술대회지
    • /
    • pp.55-65
    • /
    • 2002
  • Ginseng has been used as a key constituent in traditional medicine prescriptions for centuries. Other than its well-known anti-stress and adaptogenic properties, ginseng has also been shown to be very effective in treating age-related deterioration in metabolic and memory functions. Although it is generally believed that the saponin (GS) fraction of the ginseng root accounts for the bioactivity of ginseng, a direct demonstration on which ginsenoside does what is still generally lacking. In the past decade, our laboratory has endeavored to identify the active GS components involved in energy metabolism, memory, and anti-neurotoxicity. To examine the ergogenic effects of GS in enhancing aerobic capacity, rats were subjected to either severe cold ($40^{\circ}C$ under helium-oxygen, two hours) or exercise workload $(70\%\;VO_{2}max,$ to exhaustion). Acute systemic injection (i.p.) of ginseng GS (5-20 mg/kg) significantly elevated both the total and maximum heat production in rats and improved their cold tolerance. However, pretreating the animal with the optimal dose (10 mg/kg) of GS devoid of $Rg_1\;and\;Rb_1$ failed to elicit any beneficial effects in improving cold tolerance. This indicates that either $Rb_1\;and/or\;Rg_1$ may be essential in exemplifying the thermogenic effect of GS. Further studies showed that only pretreating the animals with $Rb_1(2.5-5\;mg/kg),\;but\;not\;Rg_l,$ resulted in an increase in thermogenesis and cold tolerance. In contrast to the acute effect of GS on cold tolerance, enhancement of exercise performance in rats was only observed after chronic treatment (4 days). Further, we were able to demonstrate that both $Rb_1\;and\;Rg_1$ are effective in enhancing aerobic endurance by exercise. To illustrate the beneficial effects of GS in learning and memory, a passive avoidance paradigm (shock prod) was used. Our results indicated that the scopolamineinduced amnesia can be significantly reversed by chronically treating (4 days) the rats with either $Rb_1\;or\;Rg_1$ (1.25 - 2.5 mg/kg). To further examine its underlying mechanisms, the effects of various GS on ${\beta}-amyloid-modulated$ acetylcholine (ACh) release from the hippocampal slices were examined. It was found that inclusion of $Rb_1$ (0.1 ${\mu}M$), but not $Rg_1$, can attenuate ${\beta}-amyloid-suppressed$ ACh release from the hippocampal slices. Our results demonstrated that $Rb_1\;and\;Rg_1$ are the key components involved in various beneficial effects of GS but they may elicit their effects through different mechanisms.

  • PDF

인삼의 구증구포에 의한 Ginsenoside의 성분변화 및 BACE-1 억제효과 (Conversion of Ginsenosides by 9 Repetitive Steamings and Dryings Process of Korean Ginseng Root and Its Inhibition of BACE-1 Activity)

  • 김도완;김유진;이연진;민진우;김세영;양덕춘
    • 동의생리병리학회지
    • /
    • 제22권6호
    • /
    • pp.1557-1561
    • /
    • 2008
  • Red ginseng possibly has new ingredients converted during steaming and dry process from fresh ginseng. Kujeungkupo method which means 9 repetitive steamings and dryings process was used for the production of red ginseng from 6-year old ginseng roots. Saponin was extracted from each red ginseng produced at the 1st, 3rd, 5th, 7th, and 9th during the steaming and drying treatment, and we analyzed saponin content with TLC. Minor saponins, such as ginsenoside-Rg3, -Rh2, compound K, and F2, increased as the process time of steaming and drying, but major saponins (ginsenoside-Rb1, -Rb2, -Rc, -Rd, -Re, -Rf, -Rg1) were decreased. Major saponins were yet observed almost at the 1st process, then degraded as the increasing time of steaming and drying process. Especially, ginsenoside-Re and -Rg were observed as considerable amount after the 1st treatment, but there were no trace of them after the 9th treatment. Ginsenoside-Rg1, -Rb2, and -Rb1 were also reduced remarkedly by 96.6%, 96%, and 92.3%, respectively. Minor saponins were increased significantly, especially for ginsenoside-Rg3 and ginsenoside-F2. These results suggest that Kujeungkupo method is the very useful method for the production of minor ginsenoside-Rg3 and -Rh2.

Expression of a Cu-Zn Superoxide Dismutase Gene in Response to Stresses and Phytohormones in Rehmannia Glutinosa

  • Park, Myoung-Ryoul;Ryu, Sang-Soo;Yoo, Nam-Hee;Yu, Chang-Yeon;Yun, Song-Joong
    • 한국약용작물학회지
    • /
    • 제13권5호
    • /
    • pp.270-275
    • /
    • 2005
  • Superoxide dismutases (SOD) are metalloenzymes that convert $O_2^-\;to\;H_2O_2$. Rehmannia glutinosa is highly tolerant to paraquat-induced oxidative stress. The primary objective of this study was to characterize regulation of SOD gene expression in R. glutinosa in response to oxidative stresses and hormones. A full-length putative SOD clone (RgCu-ZnSOD1) was isolated from the leaf cDNA library of R. glutinosa using an expressed sequence tag clone as a probe. RgCu-ZnSOD1 cDNA is 777 bp in length and contains an open reading frame for a polypeptide consisted of 152 amino acid residues. The deduced amino acid sequence of the clone shows highest sequence similarity to the cytosolic Cu-ZnSODs. The two to three major bands with several minor ones on the Southern blots indicate that RgCu-ZnSOD1 is a member of a small multi-gene family. RgCuZnSOD1 mRNA was constitutively expressed in the leaf, flower and root. The expression of RgCu-ZnSOD1 mRNA was increased about 20% by wounding and paraquat, but decreased over 50% by ethylene and $GA_3$. This result indicates that the RgCu-ZnSOD1 expression is regulated differentially by different stresses and phytohormones at the transcription level. The RgCu-ZnSOD1 sequence and information on its regulation will be useful in investigating the role of SOD in the paraquat tolerance of R. glutinosa.

Ginsenoside-Rb2 and 20(S)-Ginsenoside-Rg3 from Korean Red Ginseng Prevent Rotavirus Infection in Newborn Mice

  • Yang, Hui;Oh, Kwang-Hoon;Kim, Hyun Jin;Cho, Young Ho;Yoo, Yung Choon
    • Journal of Microbiology and Biotechnology
    • /
    • 제28권3호
    • /
    • pp.391-396
    • /
    • 2018
  • It is well known that Korean red ginseng has various biological activities. However, there is little knowledge about the antiviral activity of Korean red ginseng and its ginsenosides. In this study, we addressed whether oral administration of ginsenoside-Rb2 and -Rg3 is able to protect against rotavirus (RV) infection. The protective effect of ginsenosides against RV infection was examined using an in vivo experiment model in which newborn mice (10-day-old) were inoculated perorally (p.o.) with $1.5{\times}10^6$ plaque-forming units/mouse of RV strain SA11. When various dosages of ginsenoside-Rb2 (25-250 mg/kg) were administered 3days, 2 days, or 1 day before virus challenge, treatment with this ginsenoside at the dosage of 75 mg/kg 3days before virus infection most effectively reduced RV-induced diarrhea. In addition, consecutive administration of ginsenoside-Rb2 (75 mg/kg) at 3 days, 2 days, and 1 day before virus infection was more effective than single administration on day -3. The consecutive administration of ginsenoside-Rb2 also reduced virus titers in the bowels of RV-infected mice. In an experiment to compare the protective activity between ginsenoside-Rb2 and its two hydrolytic products (20(S)- and 20(R)-ginsenoside-Rg3), 20(S)-ginsenoside-Rg3, but not 20(R)-ginsenoside-Rg3, prevented RV infection. These results suggest that ginsenoside-Rb2 and its hydrolytic product, 20(S)-ginsenoside-Rg3, are promising candidates as an antiviral agent to protect against RV infection.

Molecular signaling of ginsenosides Rb1, Rg1, and Rg3 and their mode of actions

  • Mohanan, Padmanaban;Subramaniyam, Sathiyamoorthy;Mathiyalagan, Ramya;Yang, Deok-Chun
    • Journal of Ginseng Research
    • /
    • 제42권2호
    • /
    • pp.123-132
    • /
    • 2018
  • Ginseng has gained its popularity as an adaptogen since ancient days because of its triterpenoid saponins, known as ginsenosides. These triterpenoid saponins are unique and classified as protopanaxatriol and protopanaxadiol saponins based on their glycosylation patterns. They play many protective roles in humans and are under intense research as various groups continue to study their efficacy at the molecular level in various disorders. Ginsenosides Rb1 and Rg1 are the most abundant ginsenosides present in ginseng roots, and they confer the pharmacological properties of the plant, whereas ginsenoside Rg3 is abundantly present in Korean Red Ginseng preparation, which is highly known for its anticancer effects. These ginsenosides have a unique mode of action in modulating various signaling cascades and networks in different tissues. Their effect depends on the bioavailability and the physiological status of the cell. Mostly they amplify the response by stimulating phosphotidylinositol-4,5-bisphosphate 3-kinase/protein kinase B pathway, caspase-3/caspase-9-mediated apoptotic pathway, adenosine monophosphate-activated protein kinase, and nuclear factor kappa-light-chain-enhancer of activated B cells signaling. Furthermore, they trigger receptors such as estrogen receptor, glucocorticoid receptor, and N-methyl-$\text\tiny{D}$-aspartate receptor. This review critically evaluates the signaling pathways attenuated by ginsenosides Rb1, Rg1, and Rg3 in various tissues with emphasis on cancer, diabetes, cardiovascular diseases, and neurodegenerative disorders.

Stereospecific anticancer effects of ginsenoside Rg3 epimers isolated from heat-processed American ginseng on human gastric cancer cell

  • Park, Eun-Hwa;Kim, Young-Joo;Yamabe, Noriko;Park, Soon-Hye;Kim, Ho-Kyong;Jang, Hyuk-Jai;Kim, Ji Hoon;Cheon, Gab Jin;Ham, Jungyeob;Kang, Ki Sung
    • Journal of Ginseng Research
    • /
    • 제38권1호
    • /
    • pp.22-27
    • /
    • 2014
  • Background: Research has been conducted with regard to the development of methods for improving the pharmaceutical effect of ginseng by conversion of ginsenosides, which are the major active components of ginseng, via high temperature or high-pressure processing. Methods: The present study sought to investigate the anticancer effect of heat-processed American ginseng (HAG) in human gastric cancer AGS cells with a focus on assessing the role of apoptosis as an important mechanistic element in its anticancer actions. Results and Conclusion: HAG significantly reduced the cancer cell proliferation, and the contents of ginsenosides Rb1 and Re were markedly decreased, whereas the peaks of less-polar ginsenosides [20(S,R)-Rg3, Rk1, and Rg5] were newly detected. Based on the activity-guided fractionation of HAG, ginsenoside 20(S)-Rg3 played a key role in inducing apoptosis in human gastric cancer AGS cells, and it was generated mainly from ginsenoside Rb1. Ginsenoside 20(S)-Rg3 induced apoptosis through activation of caspase-3, caspase-8, and caspase-9, as well as regulation of Bcl-2 and Bax expression. Taken together, these findings suggest that heat-processing serves as an increase in the antitumor activity of American ginseng in AGS cells, and ginsenoside 20(S)-Rg3, the active component produced by heat-processing, induces the activation of caspase-3, caspase-8, and caspase-9, which contributes to the apoptotic cell death.