• 제목/요약/키워드: Rf magnetron sputtering

검색결과 1,633건 처리시간 0.029초

분산 반사경 기반 패브리-페로 필터를 이용한 비분산적외선 CO2 센서의 감지 특성 (Sensing characteristics of a non-dispersive infrared CO2 sensor using a Fabry-Perot filter based on distributed Bragg reflector)

  • 도남곤;이준엽;정동건;공성호;정대웅
    • 센서학회지
    • /
    • 제30권6호
    • /
    • pp.446-450
    • /
    • 2021
  • Non-dispersive infrared (NDIR) gas sensors typically use an optical filter that transmits a discriminating 4.26 ㎛ wavelength band to measure carbon dioxide (CO2), as CO2 absorbs 4.26 ㎛ infrared. The filter performance depends on the transmittance and full width at half maximum (FWHM). This paper presents the fabrication, sensitivity, and selectivity characteristics of a distributed Bragg reflector (DBR)-based Fabry-Perot filter with a simple structure for CO2 detection. Each Ge and SiO2 films were prepared using the RF magnetron sputtering technique. The transmittance characteristics were measured using Fourier-transform infrared spectroscopy (FT-IR). The fabricated filter had a peak transmittance of 59.1% at 4.26 ㎛ and a FWHM of 158 nm. In addition, sensitivity and selectivity experiments were conducted by mounting the sapphire substrate and the fabricated filter on an NDIR CO2 sensor measurement system. When measuring the sensitivity, the concentration of CO2 was observed in the range of 0-10000 ppm, and the selectivity was measured for environmental gases of 1000 ppm. The fabricated filter showed lower sensitivity to CO2 but showed higher selectivity with other gases.

비분산적외선 CO2 센서를 위한 DBR기반의 패브리 페로-필터 설계 및 성능 연구 (Design and performance study of fabry-perot filter based on DBR for a non-dispersive infrared carbon dioxide sensor)

  • 도남곤;이준엽;정동건;공성호;정대웅
    • 센서학회지
    • /
    • 제30권4호
    • /
    • pp.250-254
    • /
    • 2021
  • A highly sensitive and selective non-dispersive infrared (NDIR) carbon dioxide gas sensor requires achieving high transmittance and narrow full width at half maximum (FWHM), which depends on the interface of the optical filter for precise measurement of carbon dioxide concentration. This paper presents the design, simulation, and fabrication of a Fabry-Perot filter based on a distributed Bragg reflector (DBR) for a low-cost NDIR carbon dioxide sensor. The Fabry-Perot filter consists of upper and lower DBR pairs, which comprise multilayered stacks of alternating high- and low-index thin films, and a cavity layer for the resonance of incident light. As the number of DBR pairs inside the reflector increases, the FWHM of the transmitted light becomes narrower, but the transmittance of light decreases substantially. Therefore, it is essential to analyze the relationship between the FWHM and transmittance according to the number of DBR pairs. The DBR is made of silicon and silicon dioxide by RF magnetron sputtering on a glass wafer. After the optimal conditions based on simulation results were realized, the DBR exhibited a light transmittance of 38.5% at 4.26 ㎛ and an FWHM of 158 nm. The improved results substantiate the advantages of the low-cost and minimized process compared to expensive commercial filters.

STRATEGIC RESEARCH AT ORNL EOR THE DEVELOPMENT OF ADVANCED COATED CONDUCTORS: PART - II

  • Paranthama, M. Parans;Aytug, T.;Sathyamurthy, S.;Zhai, H.Y.;Christen, H.M.;Martin, P.M.;Goyal, A.;Christen, D.K.;Kroeger, D.M.
    • 한국초전도저온공학회:학술대회논문집
    • /
    • 한국초전도저온공학회 2002년도 학술대회 논문집
    • /
    • pp.340-340
    • /
    • 2002
  • In an effort to develop alternative single buffer layer technology for YBa$_2$Cu$_3$O$_{7-{\delta}}$ (YBCO) coated conductors, we have investigated both LaMnO$_3$, (LMO) and La$_2$Zr$_2$O$_{7}$ (LZO) as potential buffer layers. High-quality LMO films were grown directly on textured Ni and Ni-W (3%) substrates using rf magnetron sputtering. Highly textured LZO buffers were grown on textured Ni substrates using sol-gel alkoxide processing route. YBCO films were then grown on both LMO and LZO buffers using pulsed laser deposition. Detailed X-ray studies have shown that YBCO films were grown on both LMO and LZO layers with a single epitaxial orientation. A high J$_{c}$ of over 1 MA/cm$^2$ at 77 K and self-field was obtained on YBCO films grown on both LMO-buffered Ni or Ni-W substrates, and also on LZO-buffered Ni substrates. We have identified LaMnO$_3$ as a good diffusion barrier layer for Ni and it also provides a good template for growing high current density YBCO films. Similarly we have also demonstrated the growth of high J$_{c}$ YBCO films on all solution buffers. We will discuss in detail about our buffer deposition processes. processes.s.s.s.s.

  • PDF

증착 후 전자빔 조사에 따른 IWO 박막의 전기적, 광학적 특성 개선 효과 (Enhanced Electrical and Optical Properties of IWO Thin Films by Post-deposition Electron Beam Irradiation)

  • 최재욱;허성보;이연학;김대일
    • 열처리공학회지
    • /
    • 제36권5호
    • /
    • pp.298-302
    • /
    • 2023
  • Transparent and conducting tungsten (W) doped indium oxide (IWO) thin films were deposited on the glass substrate by using RF magnetron sputtering and then electron irradiation was conducted to investigate the effect of electron irradiation on the optical and electrical properties of the films. The electron irradiated films showed three x-ray diffraction peaks of the In2O3 (222), (431) and (046) planes and the full width at half maximum values are decreased as increased electron irradiation energy. In the atomic force microscope analysis, the surface roughness of as deposited films was 1.70 nm, while the films electron irradiated at 700 eV, show a lower roughness of 1.28 nm. In this study, the figure of merit (FOM) of as deposited films is 2.07 × 10-3-1, while the films electron irradiated at 700 eV show the higher FOM value of 5.53 × 10-3-1. Thus, it is concluded that the post-deposition electron beam irradiation is the one of effective methods to enhance optical and electrical performance of IWO thin films.

THE MAGNETIC PROPERTIES OF Co-Ni-Fe-N SOFT MAGNETIC THIN FILMS

  • Kim, Y. M.;Park, D.;Kim, K. H.;Kim, J.;S. H. Han;Kim, H. J.
    • 한국자기학회:학술대회 개요집
    • /
    • 한국자기학회 2000년도 International Symposium on Magnetics The 2000 Fall Conference
    • /
    • pp.492-499
    • /
    • 2000
  • Co-Ni-Fe-N thin films were fabricated by a N$\sub$2/ reactive rf magnetron sputtering method. The nitrogen partial pressure (P$\sub$N2/) was varied in the range of 0∼10%. As P$\sub$N2/ increases in this range, the saturation magnetization (B$\sub$s/) linearly decreases from 19.8 kG to 14 kG and the electrical resistivity ($\rho$) increased from 27 to 155 ${\mu}$$\Omega$cm. The coercivity (H$\sub$c/) exhibits the minimum value at 4% of P$\sub$N2/. The magnetic anisotropy (H$\sub$k/) are in the range of 20∼50 Oe. High frequency characteristics of (Co$\sub$22.2/Ni$\sub$27.6/Fe$\sub$50.2/)$\sub$100-x/N$\sub$x/ films are excellent in the range of 3∼5% of P$\sub$N2/. Especially the effective permeability of the film fabricated at 4% of P$\sub$N2/ is 800, which is maintained up to 600 MHz. This film also shows Bs of 17.5 kG, H$\sub$c/ of 1.4 Oe, resistivity of 98 $\Omega$cm and H$\sub$k/ of about 25 Oe. Also, the corrosion resistance of (Co$\sub$22.2/Ni$\sub$27.6/Fe$\sub$50.2/)$\sub$100-x/N$\sub$x/ were improved with the increase in N concentration.

  • PDF

공정압력이 GTZO 박막의 구조적, 전기적 및 광학적 특성에 미치는 영향 (Effect of Working Pressure on the Structural, Electrical, and Optical Properties of GTZO Thin Films)

  • 최병균;정양희;강성준
    • 한국전자통신학회논문지
    • /
    • 제19권1호
    • /
    • pp.39-46
    • /
    • 2024
  • 본 연구에서는 고주파 마그네트론 스퍼터링 법으로 공정압력을 1에서 7mTorr 로 변화시켜 가며 GTZO (Ga-Ti-Zn-O)박막을 제작하여, 구조적 특성과 전기적 및 광학적 특성을 조사하였다. XRD측정을 통해 공정압력에 무관하게 모든 GTZO박막이 c-축으로 우선 성장함을 확인할 수 있었고, 1mTorr 에서 제작한 GTZO 박막이 반가폭 0.38˚ 로 가장 우수한 결정성을 나타내었다. 가시광 영역(400~800 nm)에서의 평균 투과도는 공정압력에 상관없이 80% 이상의 값을 나타내었고, 공정압력이 증가함에 따라 캐리어 농도가 감소하고 이로 인해 에너지 밴드갭이 좁아지는 Burstein - Moss 효과도 관찰할 수 있었다. 공정압력 1mTorr 에서 증착한 GTZO박막의 재료 평가 지수는 9.08 × 103 Ω-1·cm-1 로 가장 우수한 값을 나타내었고 이때 비저항과 가시광 영역에서의 평균 투과도는 각각 5.12 × 10-4 Ω·cm 과 80.64 % 이었다.

R.F. magnetron sputter를 이용한 SnO_2$ film 특성에 대한 Annealing효과 (Effects of Annealing on Properties of Tin Oxide films prepared by r.f. magnetron sputtering)

  • 박용주;박진성
    • 한국재료학회:학술대회논문집
    • /
    • 한국재료학회 2003년도 추계학술발표강연 및 논문개요집
    • /
    • pp.208-208
    • /
    • 2003
  • RF 마그네트론 스퍼터링법을 이용하여 Ar과 $O_2$의 유량을 25sccm씩 흘리면서 $SiO_2$/Si기판 위에 Sn $O_2$ 박막을 증착하였다. 증착된 박막은 columnar 구조로 성장하였으며 많은 입자들이 뭉쳐서 형성된 양배추꽃(cauliflower) 형태의 뭉친 입자(agglomerates)를 가지는 표면형상이 관찰되었다. 분위기에 따른 어닐링 효과를 확인하기 위하여 50$0^{\circ}C$에서 공기와 질소 분위기하에서 열처리하였다. 열처리한 후 표면거칠기가 개선되었으며, 표면형상의 변화가 발생하였다. 특히 50$0^{\circ}C$, 질소분위기에서 어닐링한 경우는 양배추꽃 형태의 표면형상이 소수의 작은 입자가 뭉친 형태로 분리되면서 입도분포가 개선되었다. 이러한 결과는 어닐링 과정에서 발생되는 응력을 완화시키기 위하여 표면형상의 변화가 발생하는 것으로 판단된다. XPS 측정 결과, 질소 분위기에서 어닐링한 후에 OIs와 Sn5/3d 피크가 낮은 결합에너지에 위치하고 있어 산소공공의 농도가 어닐링 전에 비하여 증가하였음을 확인할 수 있다. 어닐링 전후에 Sn $O_2$ 박막의 면저항 측정 값은 XPS 결과와는 달리 질소 분위기 어닐링한 후에 오히려 면저항값이 크게 증가하였다. 이러한 결과는 질소 분위기 어닐링한 후 표면형상의 변화에 기인하여 입자간의 연결성이 저하되어 면저항값이 증가한 것으로 추정된다. 산소분위기에서 어닐링한 후에 전체적으로 전기적 특성의 재현성이 개선되었으며 Sensitivity( $R_{air}$/ $R_{gas}$)가 향상되었음을 확인하였다.하였다.석을 통하여 La의 분포를 확인하였으며, HRTEM 분석을 통하여 미세구조분석을 실시하였다.2463eV였다. 10K에서 광발광 봉우리의 919.8nm (1.3479eV)는 free exciton(Ex), 954.5nm (1.2989eV)는 donor-bound exciton 인 I2(DO,X)와 959.5nm (1.2921eV)는 acceptor-bound exciton 인 I1(AO,X) 이고, 964.6nm(1.2853eV)는 donor-acceptor pair(DAP) 발광, 1341.9nm (0.9239eV)는 self activated(SA)에 기인하는 광발광 봉우리로 고찰되었다.가 높을수록 방출전류가 시간에 따라 급격히 감소하였다. 각 duty비에서 방출전류의 양이 1/2로 감소하는 시점을 에미터의 수명으로 볼 때 duty비 대 에미터 수명관계를 구해 높은 duty비에서 전계방출을 시킴으로써 실제의 구동조건인 낮은 duty비에서의 수명을 단시간에 예측할 수 있었다. 단속적으로 일어난 것으로 생각된다.리 폐 관류는 정맥주입 방법에 비해 고농도의 cisplatin 투여로 인한 다른 장기에서의 농도 증가 없이 폐 조직에 약 50배 정도의 고농도 cisplatin을 투여할 수 있었으며, 또한 분리 폐 관류 시 cisplatin에 의한 직접적 폐 독성은 발견되지 않았다이 낮았으나 통계학적 의의는 없었다[10.0%(4/40) : 8.2%(20/244), p>0.05]. 결론: 비디오흉강경술에서 재발을 낮추기 위해 수술시 폐야 전체를 관찰하여 존재하는 폐기포를 놓치지 않는 것이 중요하며, 폐기포를 확인하지 못한 경우와 이차성 자연기흉에 대해서는 흉막유착술에 더 세심한 주의가 필요하다는 것을 확인하였다. 비디오흉강경수술은 통증이 적고, 입원기간이 짧고,

  • PDF

Al2O3 High Dense Single Layer Gas Barrier by Neutral Beam Assisted Sputtering (NBAS) Process

  • 장윤성;홍문표
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2015년도 제49회 하계 정기학술대회 초록집
    • /
    • pp.157-157
    • /
    • 2015
  • Recently, the growing interest in organic microelectronic devices including OLEDs has led to an increasing amount of research into their many potential applications in the area of flexible electronic devices based on plastic substrates. However, these organic devices require a gas barrier coating to prevent the permeation of water and oxygen because organic materials are highly susceptible to water and oxygen. In particular, high efficiency OLEDs require an extremely low water vapor transition rate (WVTR) of $1{\times}10^{-6}g/m^2day$. The Key factor in high quality inorganic gas barrier formation for achieving the very low WVTR required ($1{\times}10^{-6}g/m^2day$) is the suppression of defect sites and gas diffusion pathways between grain boundaries. In this study NBAS process was introduced to deposit enhanced film density single gas barrier layer with a low WVTR. Fig. 1. shows a schematic illustration of the NBAS apparatus. The NBAS process was used for the $Al_2O_3$ nano-crystal structure films deposition, as shown in Fig. 1. The NBAS system is based on the conventional RF magnetron sputtering and it has the electron cyclotron resonance (ECR) plasma source and metal reflector. $Ar^+$ ion in the ECR plasma can be accelerated into the plasma sheath between the plasma and metal reflector, which are then neutralized mainly by Auger neutralization. The neutral beam energy is controlled by the metal reflector bias. The controllable neutral beam energy can continuously change crystalline structures from an amorphous phase to nanocrystal phase of various grain sizes. The $Al_2O_3$ films can be high film density by controllable Auger neutral beam energy. we developed $Al_2O_3$ high dense barrier layer using NBAS process. We can verified that NBAS process effect can lead to formation of high density nano-crystal structure barrier layer. As a result, Fig. 2. shows that the NBAS processed $Al_2O_3$ high dense barrier layer shows excellent WVTR property as a under $2{\times}10^{-5}g/m^2day$ in the single barrier layer of 100nm thickness. Therefore, the NBAS processed $Al_2O_3$ high dense barrier layer is very suitable in the high efficiency OLED application.

  • PDF

Defect-related yellowish emission of un doped ZnO/p-GaN:Mg heterojunction light emitting diode

  • Han, W.S.;Kim, Y.Y.;Ahn, C.H.;Cho, H.K.;Kim, H.S.;Lee, J.H.
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2009년도 하계학술대회 논문집
    • /
    • pp.327-327
    • /
    • 2009
  • ZnO with a large band gap (~3.37 eV) and exciton binding energy (~60 meV), is suitable for optoelectronic applications such as ultraviolet (UV) light emitting diodes (LEDs) and detectors. However, the ZnO-based p-n homojunction is not readily available because it is difficult to fabricate reproducible p-type ZnO with high hall concentration and mobility. In order to solve this problem, there have been numerous attempts to develop p-n heterojunction LEDs with ZnO as the n-type layer. The n-ZnO/p-GaN heterostructure is a good candidate for ZnO-based heterojunction LEDs because of their similar physical properties and the reproducible availability of p-type GaN. Especially, the reduced lattice mismatch (~1.8 %) and similar crystal structure result in the advantage of acquiring high performance LED devices. In particular, a number of ZnO films show UV band-edge emission with visible deep-level emission, which is originated from point defects such as oxygen vacancy, oxygen interstitial, zinc interstitial[1]. Thus, defect-related peak positions can be controlled by variation of growth or annealing conditions. In this work, the undoped ZnO film was grown on the p-GaN:Mg film using RF magnetron sputtering method. The undoped ZnO/p-GaN:Mg heterojunctions were annealed in a horizontal tube furnace. The annealing process was performed at $800^{\circ}C$ during 30 to 90 min in air ambient to observe the variation of the defect states in the ZnO film. Photoluminescence measurements were performed in order to confirm the deep-level position of the ZnO film. As a result, the deep-level emission showed orange-red color in the as-deposited film, while the defect-related peak positions of annealed films were shifted to greenish side as increasing annealing time. Furthermore, the electrical resistivity of the ZnO film was decreased after annealing process. The I-V characteristic of the LEDs showed nonlinear and rectifying behavior. The room-temperature electroluminescence (EL) was observed under forward bias. The EL showed a weak white and strong yellowish emission colors (~575 nm) in the undoped ZnO/p-GaN:Mg heterojunctions before and after annealing process, respectively.

  • PDF

저온 공정 온도에서 $Al_2O_3$ 게이트 절연물질을 사용한 InGaZnO thin film transistors

  • 우창호;안철현;김영이;조형균
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2010년도 하계학술대회 논문집
    • /
    • pp.11-11
    • /
    • 2010
  • Thin-film-transistors (TFTs) that can be deposited at low temperature have recently attracted lots of applications such as sensors, solar cell and displays, because of the great flexible electronics and transparent. Transparent and flexible transistors are being required that high mobility and large-area uniformity at low temperature [1]. But, unfortunately most of TFT structures are used to be $SiO_2$ as gate dielectric layer. The $SiO_2$ has disadvantaged that it is required to high driving voltage to achieve the same operating efficiency compared with other high-k materials and its thickness is thicker than high-k materials [2]. To solve this problem, we find lots of high-k materials as $HfO_2$, $ZrO_2$, $SiN_x$, $TiO_2$, $Al_2O_3$. Among the High-k materials, $Al_2O_3$ is one of the outstanding materials due to its properties are high dielectric constant ( ~9 ), relatively low leakage current, wide bandgap ( 8.7 eV ) and good device stability. For the realization of flexible displays, all processes should be performed at very low temperatures, but low temperature $Al_2O_3$ grown by sputtering showed deteriorated electrical performance. Further decrease in growth temperature induces a high density of charge traps in the gate oxide/channel. This study investigated the effect of growth temperatures of ALD grown $Al_2O_3$ layers on the TFT device performance. The ALD deposition showed high conformal and defect-free dielectric layers at low temperature compared with other deposition equipments [2]. After ITO was wet-chemically etched with HCl : $HNO_3$ = 3:1, $Al_2O_3$ layer was deposited by ALD at various growth temperatures or lift-off process. Amorphous InGaZnO channel layers were deposited by rf magnetron sputtering at a working pressure of 3 mTorr and $O_2$/Ar (1/29 sccm). The electrodes were formed with electron-beam evaporated Ti (30 nm) and Au (70 nm) bilayer. The TFT devices were heat-treated in a furnace at $300^{\circ}C$ and nitrogen atmosphere for 1 hour by rapid thermal treatment. The electrical properties of the oxide TFTs were measured using semiconductor parameter analyzer (4145B), and LCR meter.

  • PDF