• 제목/요약/키워드: Rf Magnetron Sputtering

검색결과 1,635건 처리시간 0.028초

Solution-Processed Nontoxic and Abundant $Cu_2ZnSnS_4$ for Thin-Film Solar Cells

  • Mun, Ju-Ho
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 한국재료학회 2012년도 춘계학술발표대회
    • /
    • pp.65-65
    • /
    • 2012
  • Copper zinc tin sulfide ($Cu_2ZnSnS_4$, CZTS) is a very promising material as a low cost absorber alternative to other chalcopyrite-type semiconductors based on Ga or In because of the abundant and economical elements. In addition, CZTS has a band-gap energy of 1.4~1.5eV and large absorption coefficient over ${\sim}10^4cm^{-1}$, which is similar to those of $Cu(In,Ga)Se_2$(CIGS) regarded as one of the most successful absorber materials for high efficient solar cell. Most previous works on the fabrication of CZTS thin films were based on the vacuum deposition such as thermal evaporation and RF magnetron sputtering. Although the vacuum deposition has been widely adopted, it is quite expensive and complicated. In this regard, the solution processes such as sol-gel method, nanocrystal dispersion and hybrid slurry method have been developed for easy and cost-effective fabrication of CZTS film. Among these methods, the hybrid slurry method is favorable to make high crystalline and dense absorber layer. However, this method has the demerit using the toxic and explosive hydrazine solvent, which has severe limitation for common use. With these considerations, it is highly desirable to develop a robust, easily scalable and relatively safe solution-based process for the fabrication of a high quality CZTS absorber layer. Here, we demonstrate the fabrication of a high quality CZTS absorber layer with a thickness of 1.5~2.0 ${\mu}m$ and micrometer-scaled grains using two different non-vacuum approaches. The first solution-processing approach includes air-stable non-toxic solvent-based inks in which the commercially available precursor nanoparticles are dispersed in ethanol. Our readily achievable air-stable precursor ink, without the involvement of complex particle synthesis, high toxic solvents, or organic additives, facilitates a convenient method to fabricate a high quality CZTS absorber layer with uniform surface composition and across the film depth when annealed at $530^{\circ}C$. The conversion efficiency and fill factor for the non-toxic ink based solar cells are 5.14% and 52.8%, respectively. The other method is based on the nanocrystal dispersions that are a key ingredient in the deposition of thermally annealed absorber layers. We report a facile synthetic method to produce phase-pure CZTS nanocrystals capped with less toxic and more easily removable ligands. The resulting CZTS nanoparticle dispersion enables us to fabricate uniform, crack-free absorber layer onto Mo-coated soda-lime glass at $500^{\circ}C$, which exhibits a robust and reproducible photovoltaic response. Our simple and less-toxic approach for the fabrication of CZTS layer, reported here, will be the first step in realizing the low-cost solution-processed CZTS solar cell with high efficiency.

  • PDF

Microstructure and Magneto-Optical Properties of MnSbX(X=PT,Ag) Alloy Films (MnSbX(X=Pt, Ag) 합금막의 미세구조 및 자기광학적 특성)

  • 송민석;이한춘;김택기;김윤배
    • Journal of the Korean Magnetics Society
    • /
    • 제8권3호
    • /
    • pp.156-160
    • /
    • 1998
  • Crystal structures and magneto-optical properties of $(Mn_{0.5-Z}Sb_{0.5+Z})_{100-y}Pt_y$ (0$(Mn_{0.5-Z}Sb_{0.5+Z})_{100-y}Ag_y$ (0$^{\circ}C$ are C1b-type with fcc and NiAs-type with hcp, respectively. The MnSbAg films have a texture which the c-axis orientation is perpendicular to the film plane by annealing at 300 $^{\circ}C$ for less than 3 hours. The perpendicular anisotropy constants of the $Mn_{47.4}Sb_{47.5}Ag_{5.1}$ film annealed at 300 $^{\circ}C$ for 3 hours are $K_1=6.6{\times}10^5 \; erg/cm^3\;and\;K_2=1.9{\times}10^5\; erg/cm^3$. The Kerr rotation angle of MnSbPt films increases but that of MnSbAg film decreases by decreasing incident wavelength within the range of 700$\leq$ λ$\leq$1000 nm. High polar Kerr angles of 1.7$^{\circ}$ (λ =700 nm) and 0.6$^{\circ}$ (λ =1000 nm), 0.2$^{\circ}$ (λ =700 nm) and 0.97$^{\circ}$ (λ =1000 nm) have been obtained from $Mn_{41.1}Sb_{44,9}Pt_{14.0}$ and $Mn_{47.4}Sb_{47.5}Ag_{5.1}$ alloy films, respectively.

  • PDF

The Effects of $O_2$ Partial Prewwure on Soft Magnetic Properties of Fe-Hf-O Thin Films (Fe-Hf-O계 박막에서 산소 분압 변화가 박막특성에 미치는 영향)

  • 박진영;김종열;김광윤;한석희;김희중
    • Journal of the Korean Magnetics Society
    • /
    • 제7권5호
    • /
    • pp.243-248
    • /
    • 1997
  • The effect of $O_2$ partial pressure on microstructure and soft magnetic properties of as-deposited Fe-Hf-O thin film alloys, which are produced by rf magnetron sputtering method in $Ar+O_2$ mixed gas atmosphere, are investigated. Saturation magnetization ($4{\pi}M_s$) of Fe-Hf-O film were decreased with increasing $O_2$ partial pressure, the best soft magnetic properties exhibit at $O_2$ partial pressure of 10%. With further increase of $O_2$ partial pressure, soft magnetic properties decreased continuously. The $Fe_{82}Hf_{3.4}O_{14.6}$ film with $P_{O2}=10%$ exhibits good soft magnetic properties with $4{\pi}M_s=17.7kG$, $H_c=0.7Oe$ and ${\mu}_ {eff}$ (1~100 MHz)=2,500, respectively. The addition of O is effective in grain refinement. In case of $P_{O2}=15%$, it is observed that $Fe_3O_4$ compound is formed and high frequency soft magnetic properties are decrease. The electrical resistvity($\rho$) of Fe-Hf-O film is increased with increasing $O_2$ partial pressure. Electrical resistivity of $Fe_{82}Hf_{3.4}O_{14.6}$ film was 5 times higher than that of the film without oxygen. Thus, it is considered that the good magnetic properties of $Fe_{82}Hf_{3.4}O_{14.6}$ film results from decreasing the $\alpha$-Fe grain size by precipitates (Hf and O), high electrical resistivity.

  • PDF

Effects of Composition on Soft Magnetic Properties and Microstructures of Fe-Hf-O Thin Films (Fe - Hf - O계 박막에서 조성이 미세구조 및 연자기 특성에 미치는 효과)

  • 박진영;김종열;김광윤;한석희;김희중
    • Journal of the Korean Magnetics Society
    • /
    • 제7권5호
    • /
    • pp.237-242
    • /
    • 1997
  • The microstructure and soft magnetic properties of as-deposited Fe-Hf-O thin film alloys, which are produced at $P_{O2}=10%$ by rf magnetron sputtering method in $Ar+O_2$ mixed gas atmosphere, is investigated. Newly developed $Fe_{82}Hf_{3.4}O_{14.6}$ film exhibits good soft magnetic properties with $4{\pi}M_s=17.7$ kG, $H_c=0.7$ Oe and ${\mu}_{eff}$(0.5~100MHz)=2,500, respectively. The Fe-Hf-O films are composed of $\alpha$-Fe nanograins and amorphous phase with larger amounts of Hf and O elements which chemically combine each other. With increasing Hf area fraction, Hf and O contents increased proportionally. It was considered that O content in films was determined by Hf contents, because O was chemically combined with Hf. It results from decreasing the $\alpha$-Fe grain size by precipitates (Hf and O), high electrical resistivity. The $Fe_{82}Hf_{3.4}O_{14.6}$ film exhibits the quality factor (Q=$\mu$'/$\mu$") of 25 at 20 MHz. These good frequency characteristics are considered to be superior to other films already reported.o other films already reported.

  • PDF

The Effects of Nitrogen on Microstructure and Magnetic Properties of Nanocrystalline Fe-Nb-B-N Thin Films (나노결정구조 Fe-Nb-B-N 박막의 미세구조 및 자기적 특성)

  • 박진영;서수정;노태환;김광윤;김종열;김희중
    • Journal of the Korean Magnetics Society
    • /
    • 제7권5호
    • /
    • pp.250-257
    • /
    • 1997
  • The microstructure and magnetic properties of Fe-Nb-B-N thin film alloys, which produced by rf magnetron sputtering method in $Ar+N_2$ mixed gas atmosphere, were investigated. The $Fe_{70}Nb_{14}B_{11}N_5$ films, annealed at 59$0^{\circ}C$, exhibit soft magnetic properties: $4{\pi}M_s=16.5kG$ , $H_c=0.13Oe$ and ${\mu}_{eff}$ (1~10 MHz)=5, 000. The frequency stability of the Fe-Nb-B-N films has also been found to be good up to 10 MHz. The Fe-Nb-B-N thin film alloys annealed at 59$0^{\circ}C$ consist of three phase; fine crystalline $\alpha$-Fe phase with grain size of about 5~10 nm, Nb-B rich amorphous phase and Nb-nitride precipitates with the size of less than 3 nm. Annealed Fe-Nb-B films have two phases; $\alpha$-Fe grains with the size of about 10 nm and Nb-B rich amorphous phase. The addition of N decreased $\alpha$-Fe grain size due to the precipitation of NbN. The good magnetic properties of the Fe-Nb-B-N film alloys are due to fine $\alpha$-Fe grains resulting from the precipitation of NbN.

  • PDF

플라스틱 기판상에 저온 증착된 IZO박막의 특성 연구

  • Jeong, Jae-Hye;Jeong, Yu-Jeong;Yun, Jeong-Heum;Lee, Seong-Hun;Lee, Geon-Hwan
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 한국진공학회 2009년도 제38회 동계학술대회 초록집
    • /
    • pp.455-455
    • /
    • 2010
  • 차세대 디스플레이로 널리 알려져 있는 플렉서블 디스플레이는 휴대하기 쉽고, 깨지지 않으며, 변형이 자유로워 현재 우리 사회에 크게 주목받고 있다. 플렉서블 디스플레이의 구현을 위해서는 기존의 유리 기반 디스플레이 소자 기술에 더하여 플렉서블 기판소재에 적용 가능한 투명전도막 기술의 확립이 필요하다. 디스플레이 산업에서 주로 사용되는 투명전도막은 ITO (indium tin oxide) 및 IZO (indium zinc oxide)와 같은 투명전도성 산화물 박막 (TCO, transparent conducting oxide)이다. 그런데 플라스틱 기판이 굽힘 환경에 놓이게 되면 그 위에 증착된 산화물 박막이 쉽게 파손될 수 있다. 따라서 플렉서블 디스플레이 기술에 있어서 변형에 따른 TCO 박막의 파괴 거동에 대한 연구가 필수적이다. 본 연구에서는 PET (polyethylene terephthalate) 기판 상에 증착된 IZO 박막의 반복 굽힘 시 계면구조 변화에 따른 파괴거동을 조사하였다. 플라스틱 기판의 사용을 위해서는 산소 및 수분의 투과 방지막이 필요하며 본 연구에서는 투과 방지막 (또는 보호막)으로서 $SiO_x$ 박막을 적용하였다. IZO 박막은 $In_2O_3$ - 10 wt% ZnO 타겟을 사용하여 RF magnetron sputtering법으로 $100^{\circ}C$ 미만에서 저온 증착하였다. 보호막으로 사용되는 $SiO_x$ 박막은 HMDSO (hexamethyldisiloxane)와 Ar 및 $O_2$ 혼합기체를 이용하는 PECVD 방법으로 합성하였다. 변형에 따른 TCO 박막의 파괴 거동을 조사하기 위하여 반복 굽힘 시험 (cyclic- bending test)을 실시하였다. 반복 굽힘 시험 중 실시간으로 IZO 박막의 전기저항 변화를 측정하여 박막의 파괴 거동을 모니터링 하였다. 시편 A (135 nm-thick IZO/PET), B (135 nm-thick IZO/ 90 nm-thick $SiO_x$/PET), C (135nm-thick IZO/ 300 nm-thick $SiO_x$/PET)에 대하여 곡지름 35mm, 1000회 반복 굽힘을 실시하여 변형 중의 전기저항 변화를 조사하였다. 그리고 굽힘 시험 완료 후, FE-SEM을 이용한 시편 표면형상 관찰을 통하여 균열생성 정도를 관찰하였다. 반복 굽힘 시험 결과, A 와 C 시편의 경우, 각각 반복 굽힘 20회, 550회에서 급격한 전기저항의 증가가 관찰되었다. 그러나 B 시편의 경우, 1000회 반복 굽힘 후에도 전기저항의 변화는 나타나지 않았다. 이와 같이 반복 굽힘에 의한 IZO 박막의 파괴 거동 변화는 IZO 박막과 기판의 계면구조변화에 기인한 것으로 해석된다. IZO 박막과 기판의 계면에 $SiO_x$ 층을 삽입함으로써 계면 접합강도가 향상되었을 것으로 추측된다. 따라서 변형에 대한 파괴 저항 특성이 우수한 투명전도성 산화물 박막의 형성을 위해서는 적절한 계면구조 제어를 통한 계면 접합 특성의 향상이 필요하다.

  • PDF

Effect of Working Pressure on the Electrical and Optical Properties of ITZO Thin Films Deposited on PES Substrate with SiO2 Buffer Layer (공정압력이 SiO2 버퍼층을 갖는 PES 기판위에 증착한 ITZO 박막의 전기적 및 광학적 특성에 미치는 영향)

  • Joung, Yang-Hee;Choi, Byeong-Kyun;Kang, Seong-Jun
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • 제14권5호
    • /
    • pp.887-892
    • /
    • 2019
  • In this study, after 20nm-thick $SiO_2$ thin film was deposited by PECVD method on the PES substrate, which is known to have the highest heat resistance among plastic substrates, as a buffer layer, ITZO thin films were deposited by RF magnetron sputtering method to investigate the electrical and optical properties according to the working pressure. The ITZO thin film deposited at the working pressure of 3mTorr showed the best electrical properties with a resistivity of $8.02{\times}10^{-4}{\Omega}-cm$ and a sheet resistance of $50.13{\Omega}/sq.$. The average transmittance in the visible region (400-800nm) of all ITZO films was over 80% regardless of working pressure. The Figure of merit showed the largest value of $23.90{\times}10^{-4}{\Omega}^{-1}$ in the ITZO thin film deposited at 3mTorr. This study found that ITZO thin films are very promising materials to replace ITO thin films in next-generation flexible display devices.

Effect of RTA Temperature on the Structural and Optical Properties of HfO2 Thin Films (급속 열처리 온도가 HfO2 박막의 구조적 및 광학적 특성에 미치는 효과)

  • Chung, Yeun-Gun;Joung, Yang-Hee;Kang, Seong-Jun
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • 제14권3호
    • /
    • pp.497-504
    • /
    • 2019
  • We fabricated $HfO_2$ thin films using RF magnetron sputtering method, and investigated structural and optical properties of $HfO_2$ thin films with RTA temperatures in $N_2$ ambient. $HfO_2$ thin films exhibited polycrystalline structure regardless of annealing process, FWHM of M (-111) showed reduction trend. The surface roughness showed the smallest of 3.454 nm at a annealing temperature of $600^{\circ}C$ in result of AFM. All $HfO_2$ thin films showed the transmittance of about 80% in visible light range. By fitting the refractive index from the transmittance and reflectance to the Sellmeir dispersion relation, we can predict the refractive index of the $HfO_2$ thin film according to the wavelength. The $HfO_2$ thin film annealed at $600^{\circ}C$ exhibited a high refractive index of 2.0223 (${\lambda}=632nm$) and an excellent packing factor of 0.963.

Effect of composition on the structural and thermal properties of TiZrN thin film (TiZrN 박막의 조성이 구조적 특성 및 열적 특성에 미치는 영향)

  • Choi, Byoung Su;Um, Ji Hun;Seok, Min Jun;Lee, Byeong Woo;Kim, Jin Kon;Cho, Hyun
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • 제31권1호
    • /
    • pp.37-42
    • /
    • 2021
  • The effect of chemical composition on the structural and thermal properties of TiZrN thin films was studied. As the Zr fraction in the deposited TixZr1-xN (x = 0.87, 0.82, 0.7, 0.6, and 0.28) increased, microstructural changes consisted of reduction in the grain size and a gradual transition from columnar structure to granular structure were observed. In addition, it was also confirmed that a gradual crystal phase transition from TiN to TiZrN has occurred as the Zr fraction increased up to 0.4. After heat treatment at 900℃, Ti0.82Zr0.18N and Ti0.7Zr0.3N layers were converted to a form in which rutile phase TiO2 and TiZrO4 oxides coexist, while Ti0.6Zr0.4N layer was converted to TiZrO4 oxide. Among the five compositions of TiZrN films, the Ti0.6Zr0.4N showed the best high temperature stability and produced a significant enhancement in the thermal oxidation resistance of Inconel 617 through suppressing the surface diffusion of Cr caused by thermal oxidation of the Inconel 617 substrate.

Corrosion Behaviors of TiN Coated Dental Casting Alloys (TiN피막 코팅된 치과주조용 합금의 부식거동)

  • Jo, Ho-Hyeong;Park, Geun-Hyeng;Kim, Won-Gi;Choe, Han-Cheol
    • Korean Journal of Metals and Materials
    • /
    • 제47권2호
    • /
    • pp.129-137
    • /
    • 2009
  • Corrosion behaviors of TiN coated dental casting alloys have been researched by using various electrochemical methods. Three casting alloys (Alloy 1: 63Co-27Cr-5.5Mo, Alloy 2: 63Ni-16Cr-5Mo, Alloy 3: 63Co-30Cr-5Mo) were prepared for fabricating partial denture frameworks with various casting methods; centrifugal casting(CF), high frequency induction casting(HFI) and vacuum pressure casting(VP). The specimens were coated with TiN film by RF-magnetron sputtering method. The corrosion behaviors were investigated using potentiostat (EG&G Co, 263A. USA) in 0.9% NaCl solution at $36.5{\pm}1^{\circ}C$. The corrosion morphologies were analyzed using FE-SEM and EDX. Alloy 1 and Alloy 2 showed the ${\alpha}-Co$ and ${\varepsilon}-Co$ phase on the matrix, and it was disappeared in case of TiN coated Alloy 1 and 2. In the Alloy 3, $Ni_2Cr$ second phases were appeared at matrix. Corrosion potentials of TiN coated alloy were higher than that of non-coated alloy, but current density at passive region of TiN coated alloy was lower than that of non-coated alloy. Pitting corrosion resistances were increased in the order of centrifugal casting, high frequency induction casting and vacuum pressure casting method from cyclic potentiodynamic polarization test.