• Title/Summary/Keyword: Reynolds numbers

Search Result 643, Processing Time 0.048 seconds

Study on Flow Around Circular Cylinder Advancing Beneath Free Surface (자유표면 밑을 전진하는 원주 주위의 유동에 관한 연구)

  • Yi, Hyuck-Joon;Shin, Hyun-Kyung;Yoon, Bum-Sang
    • Journal of Ocean Engineering and Technology
    • /
    • v.27 no.5
    • /
    • pp.16-21
    • /
    • 2013
  • The flow around a circular cylinder advancing beneath the free surface is numerically investigated using a VOF method. The simulations cover Froude numbers in the range of 0.2~0.6 and gap ratios (h/d) in the range of 0.1~2.0, where h is the distance from the free surface to a cylinder, and d is the diameter of a cylinder at Reynolds number 180. It is observed that the vortex suppression effect and surface deformation increase as the gap ratio decreases or the Froude number increases. The most important results of the present study are as follows. The proximity of the free surface causes an initial increase in the Strouhal number and drag coefficient, and the maximum Strouhal number and drag coefficient occur in the range of 0.5~0.7. However, this trend reverses as the gap ratio becomes small, and the lift coefficient increases downward as the gap ratio decreases.

Effect of a Magnetic Field on Mixed Convection of a Nanofluid in a Square Cavity

  • Sheikhzadeh, G.A.;Sebdani, S. Mazrouei;Mahmoodi, M.;Safaeizadeh, Elham;Hashemi, S.E.
    • Journal of Magnetics
    • /
    • v.18 no.3
    • /
    • pp.321-325
    • /
    • 2013
  • The problem of mixed convection in a differentially heated lid-driven square cavity filled with Cu-water nanofluid under effect of a magnetic field is investigated numerically. The left and right walls of the cavity are kept at temperatures of $T_h$ and $T_c$ respectively while the horizontal walls are adiabatic. The top wall of the cavity moves in own plane from left to right. The effects of some pertinent parameters such as Richardson number (ranging from 0.1 to 10), the volume fraction of the nanoparticles (ranging 0 to 0.1) and the Hartmann number (ranging from 0 to 60) on the fluid flow and temperature fields and the rate of heat transfer in the cavity are investigated. It must be noted that in all calculations the Prandtl number of water as the pure fluid is kept at 6.8, while the Grashof number is considered fixed at 104. The obtained results show that the rate of heat transfer increases with an increase of the Reynolds number, while but it decreases with increase in the Hartmann number. Moreover it is found that based the Richardson and Hartmann numbers by increase in volume fraction of the nanoparticles the rate of heat transfer can be enhanced or deteriorated compared to the based fluid.

Effect of Number of Heating Walls on Heat Transfer in Ribbed Rectangular Channel (거친 사각채널에서 가열 벽면의 수가 열전달에 미치는 효과)

  • Bae Sung Taek;Ahn Soo Whan;Kim Myoung Ho;Lee Dae Hee;Kang Ho Keun
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.17 no.6
    • /
    • pp.514-520
    • /
    • 2005
  • Surface heat transfer of a fully developed turbulent air flow in a $45^{\circ}$ inclined ribbed square duct with two and four heating walls was experimentally investigated, at which the experimental works were peformed for Reynolds numbers ranging from 7,600 to 26,000. The pitch-to-rib height ratio, p/e, was kept at 8 and rib-height-to-channel hydraulic diameter ratio, $e/D_h$ was kept at 0.0667. The channel length-to-hydraulic diameter ratio, $L/D_h$ was 60. The heat transfer coefficient values were decreased with the increase in the number of heat-ing walls. Results of this investigation could be used in various applications of internal channel turbulent flow involving roughened walls.

Topology optimization on vortex-type passive fluidic diode for advanced nuclear reactors

  • Lim, Do Kyun;Song, Min Seop;Chae, Hoon;Kim, Eung Soo
    • Nuclear Engineering and Technology
    • /
    • v.51 no.5
    • /
    • pp.1279-1288
    • /
    • 2019
  • The vortex-type fluidic diode (FD) is a key safety component for inherent safety in various advanced reactors such as the sodium fast reactor (SFR) and the molten salt reactor (MSR). In this study, topology optimization is conducted to optimize the design of the vortex-type fluidic diode. The optimization domain is simplified to 2-dimensional geometry for a tangential port and chamber. As a result, a design with a circular chamber and a restrictor at the tangential port is obtained. To verify the new design, experimental study and computational fluid dynamics (CFD) analysis were conducted for inlet Reynolds numbers between 2000 and 6000. However, the results show that the performance of the new design is no better than the original reference design. To analyze the cause of this result, detailed analysis is performed on the velocity and pressure field using flow visualization experiments and 3-D CFD analysis. The results show that the discrepancy between the optimization results in 2-D and the experimental results in 3-D originated from exclusion of an important pressure loss contributor in the optimization process. This study also concludes that the junction design of the axial port and chamber offers potential for improvement of fluidic diode performance.

Heat transfer and flow characteristics of sweeping jet issued from rectangular nozzle with thin plate (박판이 부착된 사각노즐에서 분사되는 Sweeping jet의 유동 및 열전달 특성)

  • Kim, Donguk;Jung, Jae Hoon;Seo, Hyunduk;Kim, Hyun Dong;Kim, Kyung Chun
    • Journal of the Korean Society of Visualization
    • /
    • v.17 no.2
    • /
    • pp.58-66
    • /
    • 2019
  • This study investigated heat transfer and flow characteristics of a sweeping jet issued from a rectangular nozzle with a thin plate. A thin vertical aluminum plate was attached on outlet of fluidic oscillator to increase velocity of central area with Coanda effect and enhance heat transfer performance. From visualization and PIV experiments, sweeping jet with a thin plate has larger velocity distribution in center region than that of the normal sweeping jet while oscillating frequency is similar as the normal one. Thermographic phosphor thermometry method was used to visualize the temperature field and Nu distribution of plate with impinging sweeping jet with thin plate. Four Reynolds numbers and three jet-to-wall distances were selected as parameters. It is found that heat transfer performance in the low jet-to-wall spacing was enhanced as the cooled area was expanded. However, when the jet-to-wall spacing became greater than 8dh, heat transfer performance became similar due to reduced impinging velocity.

Comparison of aerodynamic performances of various airfoils from different airfoil families using CFD

  • Kaya, Mehmet Numan;Kok, Ali Riza;Kurt, Huseyin
    • Wind and Structures
    • /
    • v.32 no.3
    • /
    • pp.239-248
    • /
    • 2021
  • In this study, three airfoil families, NACA, FX and S, in each case three from each series with different shapes were investigated at different angles of attack using Computational Fluid Dynamics (CFD) method. To verify the CFD model, simulation results of the NACA 0012 airfoil was compared against the available experimental data and k-ω SST was used as the turbulence model. Lift coefficients, lift to drag ratios and pressure distributions around airfoils were obtained from the CFD simulations and compared each other. The simulations were performed at three Reynolds numbers, Re=2×105, 1×106and 2×106, and angle of attack was varied between -6 and 12 degrees. According to the results, similar lift coefficient values were obtained for symmetric airfoils reaching their maximum values at similar angles of attack. Maximum lift coefficients were obtained for FX 60-157 and S 4110 airfoils having lift coefficient values around 1.5 at Re=1×106 and 12 degrees of angle of attack. Flow separation occurred close to the leading edge of some airfoils at higher angles of attack, while some other airfoils were more successful in keeping the flow attached on the surface.

CFD Analysis of Trap Effect of Groove in Lubricating Systems: Part II - Variation in Radius of Curvature of Groove Edge (그루브의 Trap 효과에 대한 CFD 해석: 제2부 - 그루브 모서리의 곡률반경 변화)

  • Hong, Sung-Ho
    • Tribology and Lubricants
    • /
    • v.36 no.6
    • /
    • pp.359-364
    • /
    • 2020
  • Numerical investigation of the groove trap effect with variation in the groove-edge radius of curvature is presented here. The trap effect is evaluated in a two-dimensional sliding bearing using computational fluid dynamics (CFD). This simulation is based on the discrete phase model (DPM) and standard k - ε turbulence model using commercial CFD software, FLUENT. The numerical results are evaluated by comparisons with streamlines and particle trajectories in the grooves. Grooves are applied to various lubrication systems to improve their lubrication characteristics, such as load carrying capacity increment, leakage reduction, frictional loss reduction, and preventing three-body abrasive wear due to trapping effect. This study investigates the grove trapping effect for various groove-edge radius of curvature values and Reynolds numbers. The particle is assumed to be made of steel, with a circular shape, and is injected as a single particle in various positions. One-way coupling is used in the DPM model because the single particle injection condition is applied. Further, the "reflect" condition is applied to the wall boundary and "escape" condition is used for the "pressure inlet" and "pressure outlet" boundaries. From the numerical results, the groove edge radius is found to influence the groove trap effect. Moreover, the groove trap effect is more effective when applying the groove edge radius.

Effects of the aspect ratio and inlet velocity on the thermal stratification in a diffuser type seasonal thermal storage tank (디퓨저 타입 계간 축열조 내부 열성층화에 대한 입구 유속 및 탱크 종횡비 영향 연구)

  • Kim, Seong Keun;Jung, Sung Yong
    • Journal of the Korean Society of Visualization
    • /
    • v.19 no.3
    • /
    • pp.99-105
    • /
    • 2021
  • In this study, the thermal stratification in solar seasonal thermal storage tanks was numerically simulated. The effects of the aspect ratio (AR) and inlet velocity on the thermal stratification in the diffuser type heat storage tank were investigated. The temperature distributions inside the tank were similar with velocity fields. Jet flows from opposite diffusers encountered each other at the tank center region. Thereafter, the downward flows occurred, and this flows strongly affected the thermal stratification. When AR was smaller than 2, these downward flows influenced a further distance and enhanced mixing inside the tank. Thermal stratification was evaluated by thermocline thickness and degree of stratification, and AR of 3 had the highest degree of stratification. The inlet velocity effect was expressed with the ratio (Re/Ri) of Reynolds and Richardson numbers. The second-order approximation was found for the relationship between the thermocline thickness and log Re/Ri.

Evaluation of thermal-hydraulic performance and economics of Printed Circuit Heat Exchanger (PCHE) for recuperators of Sodium-cooled Fast Reactors (SFRs) using CO2 and N2 as working fluids

  • Lee, Su Won;Shin, Seong Min;Chung, SungKun;Jo, HangJin
    • Nuclear Engineering and Technology
    • /
    • v.54 no.5
    • /
    • pp.1874-1889
    • /
    • 2022
  • In this study, we evaluate the thermal-hydraulic performance and economics of Printed Circuit Heat Exchanger (PCHE) according to the channel types and associated shape variables for the design of recuperators with Sodium-cooled Fast Reactors (SFRs). To perform the evaluations with variables such as the Reynolds number, channel types, tube diameter, and shape variables, a code for the heat exchanger is developed and verified through a comparison with experimental results. Based on the code, the volume and pressure drop are calculated, and an economic assessment is conducted. The zigzag type, which has bending angle of 80° and a tube diameter of 1.9 mm, is the most economical channel type in a SFR using CO2 as the working fluid. For a SFR using N2, we recommend the airfoil type with vertical and horizontal numbers of 1.6 and 1.1, respectively. The airfoil type is superior when the mass flow rate is large because the operating cost changes significantly. When the mass flow rate is small, volume is a more important design parameter, therefore, the zigzag type is suitable. In addition, we conduct a sensitivity analysis based on the production cost of the PCHE to identify changes in optimal channel types.

Aerodynamic characteristics of wavy splitter plate on circular cylinder

  • Liang Gao;J. Jegadeeshwaran;S. Ramaswami;S. B. M. Priya;S. Nadaraja Pillai
    • Wind and Structures
    • /
    • v.37 no.5
    • /
    • pp.375-382
    • /
    • 2023
  • The aerodynamic characteristics of a circular cylinder with a wavy splitter plate were experimentally studied, specifically the potential reduction of drag and fluctuations in drag. To study the individual effects of amplitude and wavelength, the experiments were conducted by varying one parameter at a time while holding the other one constant. To study the effect of amplitude (A), the wavelength to diameter ratio (λ/D) was fixed at 0.115 and the amplitude to diameter ratio (A/D) was varied as 0.005, 0.010, 0.015 and 0.020. Similarly, to study the effect of wavelength, A/D was fixed as 0.020 and λ/D was varied as 0.46, 0.23, 0.15 and 0.12. Analysis of the data indicated that the wavy splitter plate caused a significant reduction in both the magnitude and the fluctuation of drag. The variation of aerodynamic forces and the fluctuations with them corresponding to different Reynolds numbers were computed and the spectral aspects of fluctuating forces due to vortex shedding is analysed and effective reduction in both shedding frequency and magnitude was observed.