• Title/Summary/Keyword: Reynolds numbers

Search Result 643, Processing Time 0.029 seconds

Effects of Rib Angles on Heat Transfer in a Divergent Square Channel With Ribs on One Wall (한 면에 리브가 설치된 확대 정사각 채널에서 리브 각이 열전달에 미치는 효과)

  • Lee, Myung Sung;Ahn, Soo Whan
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.39 no.6
    • /
    • pp.609-613
    • /
    • 2015
  • In this study, the experiments are performed to investigate the local heat transfer and pressure drops of developed turbulent flows in the diverging square channels along the axial distance. The square divergent channels are manufactured with a fixed rib height (e) = 10 mm. Four different parallel angled ribs ($a=30^{\circ}$, $45^{\circ}$, $60^{\circ}$, and $90^{\circ}$) are placed on the channel's one-sided wall only. TThe measurement are conducted within the range of Reynolds numbers from 22,000 to 79,000. The results show that a rib angle-of-attack of $45^{\circ}$ produces the best heat-transfer performance.

Heat Transfer and Frictions in the Rectangular Divergent Channel with Ribs on One Wall

  • Lee, MyungSung;Ahn, SooWhan
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.17 no.3
    • /
    • pp.352-357
    • /
    • 2016
  • An investigation of ribbed divergent channel was undertaken to determine the effect of rib pitch to height ratio on total friction factor and heat transfer results in the fully developed regime. The ribbed divergent rectangular channel with the channel exit hydraulic diameter ($D_{ho}$) to inlet channel hydraulic diameter ($D_{hi}$) ratio of 1.16 with wall inclination angle of 0.72 deg, at which the ratios (p/e) of 6,10, and 14 are considered. The ribbed straight channel of $D_{ho}/D_{hi}=1.0$ were also used. The ribbed divergent wall is manufactured with a fixed rib height (e) of 10 mm and the ratio of rib spacing (p) to height 6, 10, and 14. The measurement was run with range of Reynolds numbers from 24,000 to 84,000. The comparison shows that the ratio of p/e=6 has the greatest thermal performance in the divergent channel under two constraints; identical mass flow rate and identical pressure drop.

A Study on the Heat Transfer Perfomance of Dimpled Double Pipe Heat Exchanger on a Fuel Cell (연료전지용 딤플형 이중관열교환기의 열전달 성능에 관한 연구)

  • CHO, Dong-Hyun
    • Journal of Fisheries and Marine Sciences Education
    • /
    • v.27 no.6
    • /
    • pp.1727-1733
    • /
    • 2015
  • In the present study, the heat transfer performance of dimpled double-pipe heat exchangers for fuel cells that are utilized as cooling systems of fuel cells was studied. In addition, to comparatively analyze the heat transfer performance of dimpled double-pipe heat exchanger for fuel cells, plain double-pipe heat exchangers were also studied. Experimental results were derived on changes in the Reynolds numbers of the cooling water flowing in dimpled and plain double-pipe heat exchangers and changes in the heat flux of the air. Thereafter, to verify the reliability of the experimental results, the theoretical overall heat transfer coefficients and the experimental overall heat transfer coefficients were comparatively analyzed and the following results were derived. The heat transfer rate lost by the hot air and that of the heat transfer rate obtained by the cooling water were well balanced. The experiments of plain double-pipe heat exchangers and dimpled double-pipe heat exchangers were conducted under normal conditions and the theoretical overall heat transfer coefficient and the experimental overall heat transfer coefficient coincided well with each other. In both plain double-pipe heat exchangers and dimpled double-pipe heat exchangers, heat transfer rates increased as the cooling water flow velocity increased. Under the same experimental conditions, the heat transfer performance of dimpled double-pipe heat exchangers was shown to be higher by 1.2 times than that of plain double-pipe heat exchangers.

Enhancement of Impinging Jet Heat Transfer Using Triangular Multi-Tabs (삼각형 멀티 탭을 이용한 충돌제트 열전달 향상 연구)

  • Lee Jeong-Wook;Lee Sang-Joon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.28 no.10
    • /
    • pp.1139-1146
    • /
    • 2004
  • The effect of triangular tabs attached at the perimeter of jet nozzle on heat transfer enhancement was investigated experimentally. The modified flow structure was visualized using a smoke-wire method. Four different types of jet nozzle having 0, 4, 6 and 8 tabs were tested at jet Reynolds number Re=15,000 to investigate the effect of tabs on the variation of heat transfer rate. The local and average Nusselt numbers are increased with increasing the number of tabs. At nozzle-to-plate distance of L/D=4, the average Nusselt number was increased about 9.9% at Re=15,000 in the impingement region for the case of 8 tabs attachment. As the nozzle-to-plate distance increases, however, the heat transfer enhancement effect of triangular tabs is reduced. For the case of 4 tabs, the heat transfer enhancement is not so distinctive at L/D=8. As the protrusion depth of tabs into the jet flow increases, the heat transfer rate is also enhanced when the nozzle-to-plate distance is smaller than L/D=6.

FLOW BOILING HEAT TRANSFER FROM PLAIN AND MICROPOROUS COATED SURFACES IN SUBCOOLED FC-72

  • Rainey, K.N.;Li, G.;You, S.M.
    • Proceedings of the KSME Conference
    • /
    • 2001.06d
    • /
    • pp.181-188
    • /
    • 2001
  • The present research is an experimental study of subcooled flow boiling behavior using flat, microporousenhanced square heater surfaces in pure FC-72. Two $1-cm^{2}$ copper surfaces, one highly polished (plain) and one microporous coated, were flush-mounted into a 12.7 mm square, horizontal flow channel. Testing was performed for fluid velocities ranging from 0.5 to 4 m/s (Reynolds numbers from 18,700 to 174,500) and pure subcooling levels from 4 to 20 K. Results showed both surfaces' nucleate flow boiling curves collapsed to one line showing insensitivity to fluid velocity and subcooling. The log-log slope of the microporous surface nucleate boiling curves was lower than the plain surface due to the conductive thermal resistance of the microporous coating layer. Both, increased fluid velocity and subcooling, increase the CHF values for both surfaces, however, the already enhanced boiling characteristics of the microporous coating appear dominant and require higher fluid velocities to provide additional enhancement of CHF to the microporous surface.

  • PDF

Simulation of Turbulent Premixed Flame Propagation in a Closed Vessel (정적 연소실내 난류 예혼합화염 전파의 시뮬레이션)

  • 권세진
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.6
    • /
    • pp.1510-1517
    • /
    • 1995
  • A theoretical method is described to simulate the propagation of turbulent premixed flames in a closed vessel. The objective is to develop and test an efficient technique to predict the propagation speed of flame as well as the geometric structure of the flame surfaces. Flame is advected by the statistically generated turbulent flow field and propagates as a wave by solving twodimensional Hamilton-Jacobi equation. In the simulation of the unburned gas flow field, following turbulence properties were satisfied: mean velocity field, turbulence intensities, spatial and temporal correlations of velocity fluctuations. It is assumed that these properties are not affected by the expansion of the burned gas region. Predictions were compared with existing experimental data for flames propagating in a closed vessel charged with hydrogen/air mixture with various turbulence intensities and Reynolds numbers. Comparisons were made in flame radius growth rate, rms flame radius fluctuations, and average perimeter and fractal dimensions of the flame boundaries. Two dimensional time dependent simulation resulted in correct trends of the measured flame data. The reasonable behavior and high efficiency proves the usefulness of this method in difficult problems of flame propagation such as in internal combustion engines.

The Visualization of the Flowfield through Tube Banks with In-line and Staggered Arrangements Using the PIV (PIV를 이용한 정렬 및 엇갈림 배열을 가진 관군을 지나는 유동장의 가시화)

  • Ro, Ki-Deok;Park, Ji-Tae;Byun, Yong-Sue
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.33 no.1
    • /
    • pp.44-51
    • /
    • 2009
  • The Characteristics of the flowfield through tube banks with in-line and staggered arrangements were investigated by PIV. Strouhal numbers, velocity vectors and velocity profiles around the cylinders with in-line and staggered arrangements were observed at the pitch ratio Pt/D=2.0 and Reynolds number of Re=$Re=4.0{\times}10^3$. As the results The flow patterns through tube banks were almost a straight line in case of the in-line arrangement while it was almost 八 type in case of the staggered arrangement in the direction of the wake. The average velocity in the rear region of the tube banks with the staggered arrangement was far smaller than that with the in-line arrangement. The Strouhal number in the last rank was far smaller than that in the front ranks in both of the in-line and staggered arrangements. The wake of each cylinder changed with time and with the position of the cylinder.

Characteristics of Heat Transfer in the Ribbed Rectangular Channel with Variable Heating Condition

  • Kim Won-Cheol;Putra Ary Bachtiar Krishna;Kang Ho-Keun;Ahn Soo-Whan
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • v.15 no.1
    • /
    • pp.10-16
    • /
    • 2007
  • Surface heat transfer of a fully developed turbulent air flow in a $45^{\circ}$ inclined ribbed square duct with two and four heating walls was experimentally investigated, at which the experimental works were performed for Reynolds numbers ranging from 7,600 to 24,900. The pitch-to-rib height ratio, p/e was kept at 8 and rib-height-to-channel hydraulic diameter ratio, $e/D_h$ was kept at 0.0667. The channel length-to-hydraulic diameter ratio, $L/D_h$ was 60. The heat transfer coefficient values were decreased with the increase in the number of heating walls. Results of this investigation could be used in various applications of internal channel turbulent flow involving roughened walls.

Characteristics of Internal Flow and Fuel Spray in a Fuel Nozzle Orifice (연료노즐의 내부유동 및 외부분무 특성)

  • Hong, S.T.;Park, J.H.;Koo, J.Y.
    • Journal of ILASS-Korea
    • /
    • v.1 no.1
    • /
    • pp.76-84
    • /
    • 1996
  • The nozzle geometry and up-stream inject ion condition affect the characteristics of flow inside the nozzle. such as turbulence and cavitation bubbles. Flow details in fuel nozzle orifice with sudden contraction of cross sectional area have been investigated both experimentally and numerically. The measurements of velocities of internal flow in a scaled-up nozzle with different length to diameter rat io(L/d) were made by laser Doppler velocimetry in order to clarify the effect of internal flow on the characteristics of fuel spray. Mean and fluctuating velocities and discharge coefficients were obtained at various Reynolds numbers. The turbulent intensity and turbulence kinetic energy in a sharp inlet nozzle were higher than that in a round inlet nozzle. Calculations were also performed for the same nozzles as scaled-up experimental nozzles using the SIMPLE algorithm. External spray behavior under different nozzle geometry and up-stream flow conditions using Doppler technique and visualization technique were also observed.

  • PDF

Flow and Heat Transfer Within a Rectangular Film Cooling Hole of Normal Injection Angle (수직분사각도를 갖는 직사각 막냉각홀 내부에서의 유동 및 열/물질전달 특성)

  • Hong, Sung-Kook;Lee, Dong-Ho;Kang, Seung-Goo;Cho, Hyung-Hee
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.28 no.4
    • /
    • pp.456-466
    • /
    • 2004
  • An experimental study has been conducted to investigate the flow and heat/mass transfer characteristics within a rectangular film cooling hole of normal injection angle for various blowing ratios and Reynolds numbers. The results are compared with those for the square hole. The experiments have been performed using a naphthalene sublimation method and the flow field has been analyzed by numerical calculation using a commercial code (FLUENT). The heat/mass transfer around the hole entrance region is enhanced considerably due to the reattachment of separated flow and the vortices generated within the hole. At the hole exit region, the heat/mass transfer increases because the main flow induces a secondary vortex. It is observed that the overall heat/mass transfer characteristics are similar to those for the square hole. However, the different heat/mass transfer patterns come out due to increased aspect ratio. Unlike the square hole, the heat/mass transfer on the trailing edge side of hole entrance region has two peak regions due to split flow reattachment, and heat/mass transfer on the hole exit region is less sensitive to the blowing ratios than the square hole.