• Title/Summary/Keyword: Reynolds numbers

Search Result 643, Processing Time 0.028 seconds

An Experimental Study on Aerodynamic Characteristics of a Flapping Wing (플래핑 날개의 공력특성에 관한 실험적 연구)

  • Song, Woo-Gil;Chang, Jo-Won;Jeon, Chang-Su
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.17 no.4
    • /
    • pp.8-16
    • /
    • 2009
  • An experimental study was carried out to investigate aerodynamic characteristics on reduced frequency of flapping wings. The half span of the wing is 28cm, and the mean chord length of wing is 10cm. In flight, the Reynolds Number range of birds is about $10^4$, and the reduced frequency during a level flight is 0.25. The experimental variables of present study were set to have similar conditions with the bird flight's one. The freestream velocities in a wind tunnel were 2.50, 3.75 and $5.00^m/s$, and the corresponding Reynolds numbers were $1.7{\times}10^4$, $2.5{\times}10^4$ and $3.3{\times}10^4$, respectively. The wing beat frequencies of an experimental model were 2, 3 and 4Hz, and the corresponding reduced frequency was decided between 0.1 and 0.5. Aerodynamic forces of an experimental flapping model were measured by using 2 axis load-cell. Inertial forces measured in a vacuum chamber were removed from measuring forces in the wind tunnel in order to acquire pure aerodynamic forces. Hall sensors and laser trigger were used to make sure the exact position of wings during the flapping motion. Results show that the ratio of downstroke in a wing beat cycle is increased as a wing beat frequency increases. The instantaneous lift coefficient is the maximum value at the end of downstroke of flapping wing model. It is found that a critical reduced frequency with large lift coefficient is existed near k=0.25.

  • PDF

Heat/Mass Transfer Characteristics on Stationary Turbine Blade and Shroud in a Low Speed Annular Cascade (I) - Near-tip Blade Surface - (환형 캐스케이드 내 고정된 터빈 블레이드 및 슈라우드에서의 열/물질전달 특성 (I) - 블레이드 끝단 인접 표면 -)

  • Rhee Dong-Ho;Cho Hyung Hee
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.29 no.4 s.235
    • /
    • pp.485-494
    • /
    • 2005
  • For the extensive investigation of local heat/mass transfer on the near-tip surface of turbine blade, experiments were conducted in a low speed stationary annular cascade. The turbine test section has a single stage composed of sixteen guide vanes and blades. The chord length and the height of the tested blade are 150 mm and about 125 mm, respectively. The blade has flat tip geometry and the mean tip clearance is about $2.5{\%}$ of the blade chord. Detailed mass transfer coefficient on the blade near-tip surface was obtained using a naphthalene sublimation technique. The inlet flow Reynolds number based on chord length and incoming flow velocity is changed from $1.0{\times}10^{5}\;to\;2.3{\times}10^{5}.$ Extremely complex heat transfer characteristics are observed on the blade surface due, to complicated flow patterns, such as flow acceleration, laminarization, transition, separation bubble and tip leakage flow. Especially, the suction side surface of the blade has higher heat/mass transfer coefficients and more complex distribution than the pressure side surface, which is related to the leakage flow. For all the tested Reynolds numbers, the heat/mass transfer characteristics on the turbine blade are the similar. The overall averaged $Sh_{c}$ values are proportional to $Re_{c}^{0.5}$ on the stagnation region and the laminar flow region such as the pressure side surface. However, since the flow is fully turbulent in the near-tip region, the heat/mass transfer coefficients are proportional to $Re_{c}^{0.8}.$

Solver for the Wavier-Stokes Equations by using Initial Guess Velocity (속도의 초기간 추정을 사용한 Navier-Stokes방정식 풀이 기법)

  • Kim, Young-Hee;Lee, Sung-Kee
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.32 no.9
    • /
    • pp.445-456
    • /
    • 2005
  • We propose a fast and accurate fluid solver of the Wavier-Stokes equations for the physics-based fluid simulations. Our method utilizes the solution of the Stokes equation as an initial guess for the velocity of the nonlinear term in the Wavier-Stokes equations. By guessing the initial velocity close to the exact solution of the given nonlinear differential equations, we can develop remarkably accurate and stable fluid solver. Our solver is based on the implicit scheme of finite difference methods, that makes it work well for large time steps. Since we employ the ADI method, our solver is also fast and has a uniform computation time. The experimental results show that our solver is excellent for fluids with high Reynolds numbers such as smoke and clouds.

3D Numerical investigation of a rounded corner square cylinder for supercritical flows

  • Vishwanath, Nivedan;Saravanakumar, Aditya K.;Dwivedi, Kush;Murthy, Kalluri R.C.;Gurugubelli, Pardha S.;Rajasekharan, Sabareesh G.
    • Wind and Structures
    • /
    • v.35 no.1
    • /
    • pp.55-66
    • /
    • 2022
  • Tall buildings are often subjected to steady and unsteady forces due to external wind flows. Measurement and mitigation of these forces becomes critical to structural design in engineering applications. Over the last few decades, many approaches such as modification of the external geometry of structures have been investigated to mitigate wind-induced load. One such proven geometric modification involved the rounding of sharp corners. In this work, we systematically analyze the impact of rounded corner radii on the reducing the flow-induced loading on a square cylinder. We perform 3-Dimensional (3D) simulations for high Reynolds number flows (Re=1 × 105) which are more likely to be encountered in practical applications. An Improved Delayed Detached Eddy Simulation (IDDES) method capable of capturing flow accurately at large Reynolds numbers is employed in this study. The IDDES formulation uses a k-ω Shear Stress Transport (SST) model for near-wall modelling that prevents mesh-induced separation of the boundary layer. The effects of these corner modifications are analyzed in terms of the resulting variations in the mean and fluctuating components of the aerodynamic forces compared to a square cylinder with no geometric changes. Plots of the angular distribution of the mean and fluctuating coefficient of pressure along the square cylinder's surface illustrate the effects of corner modifications on the different parts of the cylinder. The windward corner's separation angle was observed to decrease with an increase in radius, resulting in a narrower and longer recirculation region. Furthermore, with an increase in radius, a reduction in the fluctuating lift, mean drag, and fluctuating drag coefficients has been observed.

Experimental investigation on heat transfer of nitrogen flowing in a circular tube

  • Chenglong Wang;Yuliang Fang;Wenxi Tian;Guanghui Su;Suizheng Qiu
    • Nuclear Engineering and Technology
    • /
    • v.56 no.2
    • /
    • pp.463-471
    • /
    • 2024
  • Average and local convective heat transfer coefficients of nitrogen are measured experimentally in an electrically heated circular tube for a range of Reynolds number from 1.08 × 104 to 3.60 × 104, and wall-to-bulk temperature ratio from 1.01 to 1.77. The exit Mach number is up to 0.17, and the heat flux is up to 46 kW·m-2. The molybdenum test section has a 62 diameters heated section with an inside diameter of 5 mm and a 30 diameters entrance section to ensure the fully-developed flow. Uncertainty of Nusselt number is less than 1.6 % in this study. The results indicate that the average heat transfer correlations evaluated by both the bulk and the modified film Reynolds numbers agree well with the experimental data. The local heat transfer results based on bulk properties are compared with previous empirical correlations. New prediction correlations are recommended which are significantly affected by the property variation and heated length. The comparison between the proposed correlations and experimental points shows that 88 % of experimental data fall into an error of 10 %, and almost all data are within an error of 20 %.

Heat transfer characteristics of an internal cooling channel with pin-fins and ribbed endwalls in gas turbine blade

  • Vu T.A. Co;Hung C. Hoang;Duy C.K. Do;Son H. Truong;Diem G. Pham;Nhung T.T. Le;Truong C. Dinh;Linh T. Nha
    • Advances in aircraft and spacecraft science
    • /
    • v.11 no.2
    • /
    • pp.153-175
    • /
    • 2024
  • In jet engines, turbine blade cooling has an extremely important role. The pin-fin array, which is situated close to the trailing edge of the blade, aids in internal cooling of the gas turbine blades and preserves the structural integrity of the blade. Previous studies often focused on pin-fin configurations, but the current research focuses on improving the geometry at the endwalls to reduce wake vortices behind the pin-fins and enhance heat transfer at the endwalls location. Using the k-ω turbulence model, a numerical study was conducted on a ribbed shape situated on the walls between pin-fin arrays, spanning a Reynolds number range of 7400 to 36000, in order to determine the heat transport characteristics. The heat transfer efficiency coefficient and Nusselt number increase dramatically with the revised wall configuration, according to the numerical data. The channel's heat transfer efficiency is increased by enlarging the heat transfer areas near the pin-fins and by the interaction of the flow with the endwalls. The addition of ribs causes the Nusselt number of the new model to climb from 78% to 96% at the previously given Reynolds numbers, and the heat transfer efficiency index to rise from 60% to 73%. The height (Hr), position (Lr), forward width (Wf), and backward width (Wb) of the ribs are among the geometric elements that were looked at in order to determine how they affected the performance of heat transmission. In comparison to the reference design, the parametric study results demonstrate that the best forward width (Wf/R=18.75%) and backward width (Wb/R=31.25%) increase the heat transfer efficiency index by 0.4% and 1.3%, respectively.

Convective Heat Transfer in a Channel with an Isothermal Rectangular Beam (한 개의 등온사각빔이 부착된 채널에서의 대류열전달)

  • Kwon, Sun-Sok;Ree, Jae-Shin
    • Solar Energy
    • /
    • v.14 no.2
    • /
    • pp.75-90
    • /
    • 1994
  • Thermal energy transport in a two-dimensional horizontal and vertical channel with an isothermal rectangular beam attached to one adiabatic wall is investigated from the numerical solution of Navier-Stokes and energy equations. The solutions have been obtained for dimensionless aspect equations. The solutions have been obtained for dimensionless aspect ratios of beam, H/B=$0.25{sim}4$, Reynolds numbers, Re=$50{\sim}500$ and Grashof numbers, Gr=$0{\sim}5{\times}10^4$. The mean Nusselt number, $\overline{Nu}$ for horizontal and vertical channels shows same value at Gr=0 and increases as Gr increases and decreases as H/B increases at Re=100. $\overline{Nu}$ of vertical channel shows higher in $0.25{\leq}H/B<1.1$ and lower in $1.1{\leq}H/B{\leq}4.0$ than that of horizontal channel at $Gr=10^4$, Re=100. $\overline{Nu}$ of vertical channel shows higher in $0.25{\leq}H/B<1.1$ and lower in $1.1{\leq}H/B=1.0$ than that of horizontal channel at Re=100, $0<Gr{\leq}5{\times}10^4$. A comparison between the experimental and numerical results shows good agreement.

  • PDF

Drag Coefficient Variations of an Oscillating NACA 0012 Airfoil (진동하는 NACA 0012 에어포일에서의 항력계수 변화)

  • Kim, Dong-Ha;Chang, Jo-Won;Kim, Hak-Bong;Jeon, Chang-Soo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.36 no.2
    • /
    • pp.137-145
    • /
    • 2008
  • An experimental study was performed in order to investigate the influence of Reynolds number on the drag coefficient variations of an oscillating airfoil. A NACA 0012 airfoil was sinusoidally pitched at the quarter chord point with an oscillating amplitude of ${\pm}6^{\circ}$. The free-stream velocities were 1.98, 2.83 and 4.03 m/s and the corresponding chord Reynolds numbers were $2.3{\times}10^4$, $3.3{\times}10^4$ and $4.8{\times}10^4$, respectively. The drag coefficient was calculated from the ensemble average velocity measured by an X-type hot-wire probe(X-type, 55R51) in the near-wakes region. In the case of Re=$2.3{\times}10^4$, variation of drag coefficient shows a negative damping (counter-clockwise variation), which implies an unstable state which could be excited by aerodynamic force, whereas the drag coefficient represents the positive damping (clockwise variation) as the Reynolds number increases from Re=$3.3{\times}10^4$ to $4.8{\times}10^4$. Hence, the drag coefficient variations show significant differences between Re=$2.3{\times}10^4$ and $4.8{\times}10^4$이다.

An Experimental Study on the Promotion of the Waste-Heat Recovery in the Fluidized Beds used in Reclamation of Foundry Sand (주물사 재생 유동층내 폐열회수 증진에 관한 실험적 연구)

  • Baek, Ko-Kil;Park, Jong-Suen;Lee, Eun-Pyo;Choi, Sung-Ill;Choi, Guk-Gwang;Jeon, Sung-Taek
    • Solar Energy
    • /
    • v.18 no.2
    • /
    • pp.145-152
    • /
    • 1998
  • In this experimental study, for obtaining the data to be used in the increased recover rate of waste heat from the recirculated sand, the furan foundry sand were used as the fluidized particle in the fluidized bed in which the smooth, spiral and finned tubes($Do={\varphi}12.7$) were horizontally installed and used as the heat-transfer tubes. The heat transfer experiments were performed in the conditions of water Reynolds number of inside tubes in the range of 4,000 to 18,000 and particle Reynolds number of outside tube in the range of 0.8 to 7.5. The heat-transfer coefficients(ho) increase as the higher inside temperature of the fluidized bed and the maximum heat-transfer coefficients can be obtained in the range of 3.5 to 5.5 of particle Reynolds number in the all tubes. The maximum Nu numbers of smooth, spiral and finned tubes are figured as about 1:1.5:3 in order even if the ratios show little different as the temperatures of bed.

  • PDF

Investigations into the Cylinder Flow Stabilities with a Thin Film Attachment

  • Doh, Deog-Hee;Jo, Hyo-Je;Kwon, Seang-Yong;Kim, Hyoung-June;Cho, Gyeang-Rae;Shin, Byeong-Rog
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.35 no.7
    • /
    • pp.957-965
    • /
    • 2011
  • The wakes of a cylindrical body have been investigated. The cylindrical body was attached with a thin film. The film is made of silicon with configurations of 50mm(W) ${\times}$ 150mm(L) ${\times}$ 0.3mm(T). The cylinder wakes have been measured with PIV experiments under the conditions with and without the thin film. The diameter of the installed cylinder body is 30mm and the Reynolds numbers are 2730, 6160 and 9750 with the diameter. The measurement system consists of an Ar-ion laser(6W), a high speed camera(1024 ${\times}$ 992 pixel, 500fps) and a host computer. FFT analyses have been carried out using the velocity vectors obtained by PIV measurements at the point X/D=1.52 and Z/D=0.52. For understanding the three-dimensional flow structures, a new Volumetric PTV(particle tracking velocimetry) has been constructed, in which the same four high-resolution cameras have been used. It has been verified that the flexible film suppresses or damps the vortices separated from the cylinder body, which makes the cylinder's wakes stable. With increase of Re numbers the intensity of the dominant frequency of the wakes become smaller.