• Title/Summary/Keyword: Reynolds numbers

Search Result 643, Processing Time 0.026 seconds

An Experimental Investigation of Unsteady Mixed Convection in a Horizontal Channel with Cavity Using Thermo-Sensitive Liquid Crystals

  • Bae, Dae-Seok;Cai, Long-Ji;Kim, Eun-Pil
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.33 no.7
    • /
    • pp.987-993
    • /
    • 2009
  • An experimental study is performed to investigate unsteady mixed convection in a horizontal channel with a heat source. Particle image velocimetry (PIV) with thermo-sensitive liquid crystal (TLC) tracers is used for visualization and analysis. This method allows simultaneous measurement of velocity and temperature fields at a given instant of time. Quantitative data of the temperature and velocity are obtained by applying the color-image processing to a visualized image, and neural network is applied to the color-to-temperature calibration. It is found that the periodic flow of mixed convection in a cavity appears at very low Reynolds numbers (Re<0.4), and the period decreases with increasing Reynolds numbers and increases with increasing aspect ratio.

Asymmetric Vortices around a Body at High Angle of Attack Subsonic Flow (아음속 유동하의 고 받음각 물체 주위의 비대칭 와류 특성 연구)

  • Park, Mee-Young;Kim, Wan-Sub;Lee, Jae-Woo;Park, Soo-Hyung
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.03b
    • /
    • pp.33-38
    • /
    • 2008
  • Numerical investigation of asymmetric vortices at high angles of attack subsonic flow is performed using three-dimensional Navier-Stokes equations. A small bump has been carefully selected and attached near the nose of an ogive cylinder to simulate symmetric vortices. Selected bump shape does develop asymmetric vortices and is verified using Lamont's experimental results. By changing the angle of attack, Reynolds numbers, and Mach numbers, the characteristics of asymmetric vortices are observed. The angle of attack which contributes significantly to the generation of asymmetric vortices are over 30 degrees. By increasing Mach number and Reynolds number asymmetric vortices, hence the side forces show decreasing trend..

  • PDF

Characteristics of Vortex Shedding behind a Circular Cylinder with Serrated Fins (톱니형 핀이 부착된 튜브의 와유출특성 연구)

  • Bu, Jeong-Suk;Ryu, Byeong-Nam;Kim, Gyeong-Cheon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.25 no.8
    • /
    • pp.1077-1086
    • /
    • 2001
  • An experimental study is performed to investigate the characteristics of vortex shedding behind a circular cylinder with serrated fins using hot-wire anemometer. Strouhal numbers which are calculated using outer diameter of a circular cylinder with serrated fins are higher than that of a circular cylinder. Fin thickness and pitch are closely related with vortex shedding frequency and play increasing or decreasing vortex shedding after transient Reynolds number. Strouhal numbers using effective diameters which are proposed in this paper agree with that of a circular cylinder. After transient Reynolds number, a trend of Strouhal number can be estimated by checking the ratio of effective diameter to inner diameter.

The Effect of Main Stream Turbulence on the Heat Transfer Around a Cylinder Surface (주 유동의 난류특성이 원통 표면에서의 열전달에 미치는 영향에 관한 연구 - 수치 해석적 고찰 -)

  • Park, J.H.;Choi, Y.K.;Ryou, H.S.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.3 no.3
    • /
    • pp.186-196
    • /
    • 1991
  • Numerical analysis has been performed to investigate the effects of the turbulence intensity and Prandtl number on the local heat transfer around a circular cylinder in crossflow. The governing equations were reformulated in a non-orthogonal coordinate system with Cartesian velocity components and discretised by the finite volume method with a non-staggered variable arrangement. For laminar flow, the calculations were performed for the Reynolds numbers 26 and 200. The results showed good agreement with the experimental results. For turbulent flow of the Reynolds number $1{\times}10^5$ and $2{\times}10^6$, the results showed that with an increase in the turbulent intensity in the main stream, the local Nusselt number increases in the front region of the circular cylinder. But the effect of turbulent intensity on the local Nusselt number diminishes in the wake region. The influence of Prandtl numbers show similar trend to that of turbulent intensity.

  • PDF

Comparison of Unconfined and Confined Micro-scale Impinging Jets

  • Choo, Kyo-Sung;Youn, Young-Jik;Kim, Sung-Jin
    • Proceedings of the KSME Conference
    • /
    • 2008.11b
    • /
    • pp.2210-2213
    • /
    • 2008
  • In the present study, effects of degree of confinement on heat transfer characteristics of a micro-scale slot jet impinging on a heated flat plate are experimentally investigated. The effects of Reynolds numbers (Re = $1000{\sim}5000$), lateral distances (x/B = $1{\sim}10$), nozzle-to-plate spacings (Z/B = $1{\sim}20$), and degree of confinement ($B_c$/B = 3, 48) on the Nusselt number are considered. The results show that the effects of the degree of confinement on the cooling performance of the micro-scale impinging slot jet are significant at lower nozzle-to-plate spacings and higher Reynolds numbers. In addition, it is shown that the cooling performance of the micro-scale unconfined slot impinging jet is 200% higher than that of the micro-scale confined slot impinging jet.

  • PDF

A Numerical Study on the Bubble Noise and the Tip Vortex Cavitation Inception

  • Park, Jin-Keun;Georges L. Chahine
    • Journal of Ship and Ocean Technology
    • /
    • v.7 no.3
    • /
    • pp.13-33
    • /
    • 2003
  • This paper presents a numerical study on tip vortex cavitation inception predictions based on non-spherical bubble dynamics including splitting and jet noise emission. A brief summary of the numerical method and its validation against a laboratory experiment are presented. The behavior of bubble nuclei is studied in a tip vortex flow field at two Reynolds numbers, provided by a viscous flow solver. The bubble behavior is simulated by an axisymmetric potential flow solver with the effect of surrounding viscous flow taken into account using one way coupling. The effects of bubble nucleus size and Reynolds number are studied. An effort to model the bubble splitting at lower cavitation numbers is also described.

Experimental and Computational Studies for Flow Distribution In a Rectangular Duct System with Two Branches (두 개의 분지관을 가진 직사각형 덕트 내의 유량배분에 관한 실험 및 수치계산 연구)

  • 윤영환;배택희;박원구
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.14 no.9
    • /
    • pp.766-773
    • /
    • 2002
  • Flow distributions in a rectangular duct with two branch ducts are measured by 5 W laser doppler velocity meter. The fluid flows are also computed by commercial soft-ware of STAR-CD for comparison between them. The Reynolds numbers in the main duct are from 4,226 to 17,491. The ratios distributed into two branches from the main duct are in-variant to Reynolds numbers according to both of numerical and experimental results. However computed velocity profiles at exit of each branch are somewhat different from measured profiles at the same location.

Space-Time Characteristics of the Wall Shear-Stress Fluctuations in a Low-Reynolds Number Axial Turbulent Boundary Layer (축방향 난류경계층에서 벽면마찰 섭동량의 공간 및 시간에 따른 특성)

  • 신동신
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.15 no.11
    • /
    • pp.895-901
    • /
    • 2003
  • Direct numerical simulation database of an axial turbulent boundary layer is used to compute frequency and wave number spectra of the wall shear-stress fluctuations in a low-Reynolds number axial turbulent boundary layer. One-dimensional and two-dimensional power spectra of flow variables are calculated and compared. At low wave numbers and frequencies, the power of streamwise shear stress is larger than that of spanwise shear stress, while the powers of both stresses are almost the same at high wave numbers and frequencies. The frequency/streamwise wave number spectra of the wall flow variables show that large-scale fluctuations to the ms value is largest for the streamwise shear stress, while that of small-scale fluctuations to the rms value is largest for pressure. In the two-point auto-correlations, negative correlation occurs in streamwise separations for pressure and spanwise shear stress, and in spanwise correlation for both shear stresses.

A Numerical Study of the Effects of Mass Flow Rate Distribution on the Flow Characteristics in a Two Dimensional Multi-Jet with Crossflow of the Spent Fluid (직교류를 가지는 이차원 다중젯트에서 유량분포가 유동특성에 미치는 영향)

  • 강동진;오원태
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.8
    • /
    • pp.1940-1949
    • /
    • 1995
  • A numerical study for a two dimensional multi-jet with crossflow of the spent fluid has been carried out. Three different distributions of mass-flow rate at 5 jet exits were assumed to see their effects upon the flow characteristics, especially in the jet-flow region. For each distribution, various Reynolds numbers ranging from laminar to turbulent flows were considered. Results show that a fully developed laminar flow exists above a certain Reynolds number whose exact value depends upon the mass flow rate distribution. AS the Reynolds number increases, the flow becomes transitional from downstream and finally a fully developed turbulent flow forms in the jet-flow region. The critical Reynolds number where the fully developed turbulent flow forms is quite dependent upon the distribution of mass-flow rate. One interesting result is that the distribution of the skin friction coefficient along the inpingement plate in the jet-flow region shows a consistent dependency on the Reynolds number, i.e. inversely proportional to the square root of the Reynolds number, regardless of flow regime.

An Approximate Analytical Method for Hydrodynamic Forces on Oscillating Inner Cylinder in Concentric Annulus (동심원내에서 진동하는 내부 실린더에 작용하는 유체유발력의 근사적 해법)

  • 심우건
    • Journal of KSNVE
    • /
    • v.7 no.5
    • /
    • pp.861-869
    • /
    • 1997
  • An approximate analytical method has been developed for estimating hydrodynamic forces acting on oscillating inner cylinder in concentric annulus. When the rigid inner cylinder executes translational oscillation, fluid inertia and damping forces on the oscillating cylinder are generated by unsteady pressure and viscous skin friction. Considering the dynamic-characteristics of unsteady viscous flow and the added mass coefficient of inviscid fluid, these hydrodynamic forces including viscous effect are dramatically simplified and expressed in terms of oscillatory Reynolds number and the geometry of annular configuration. Thus, the viscous effect on the forces can be estimated very easily compared to an existing theory. The forces are calculated by two models developed for relatively high and low oscillatory Reynolds numbers. The model for low oscillatory Reynolds number is suitable for relatively high ratio of the penetration depth to annular space while the model for high oscillatory Reynolds number is applicable to the case of relatively low ratio. It is found that the transient ratio between two models is approximately 0.2~0.25 and the forcea are expressed in terms of oscillatory Reynolds number, explicity. The present results show good agreements with an existing numerical results, especially for high and low penetration ratios to annular gap.

  • PDF