The present study is aimed to investigate flow characteristics of Two dimensional backward-facing step by numerical approach. A convection conservative difference scheme based upon SOLA algorithm is used for the solution of the two-dimensional incompressible Navier-Stokes equations to simulate the laminar, transitional and turbulent flow conditions at which the experimental data can be available for the backward-facing step. The twenty kinds of Reynolds number are used for the calculations. In an effort to demonstrate that the reported solutions are dependent on the mesh refinement, computations are performed on seven different meshes of uniformly increasing refinement. Also to investigate the result of inflow dependence, two kinds of the inflow profile are chosen for the laminar flow. As criterion of benchmarking the result of numerical simulation, reattachment length is used for the selected Reynolds numbers.
Transactions of the Korean Society of Mechanical Engineers
/
v.19
no.8
/
pp.2039-2050
/
1995
The nonlinear low-Reynolds-number k..epsilon. model of park and Sung is extended to predict the turbulent heat transports in separated and reattaching flows. The equations of the temperature variance( $k_{\theta}$ and its dissipation rate(.epsilon.$_{\theta}$ are solved, in concert with the equations of the turbulent kinetic energy(k) and its dissiation rate(.epsilon). In the present model, the near-wall effect and the non-equilibrium effect are fully taken into consideration. The validation of the model is then applied to the turbulent flow behind a backward-facing step and the flow over a blunt body. The predicted results of the present model are compared and evaluated with the relevant experiments.
Journal of Advanced Marine Engineering and Technology
/
v.22
no.6
/
pp.935-941
/
1998
Experiments were carried out for a cubic cavity flow. Contrinuous shear stress is supplied by driven flow for high Reynolds number and three kinds of aspect ratios. Velocity vectors are obtained by PIV and they are used as velocity components for Poisson equation for pressure, Related boundary conditions and no-slip condition at solid wall and the linear velocity extrapolation on the upper side of cavity are well examined for the present study. For calculation of pressure resolution of grid is basically $40{\times}40$ and 2-dimensional uniform mesh using MSC staggered grid is adopted. The flow field within the cavity maintains a forced-vortex formation and almost of the shear stress from the driving inflow is transformed into rotating flow energy and the size of the distorted forced-vortex increases with increment of Reynolds number
Proceedings of the Korean Society for Noise and Vibration Engineering Conference
/
2011.04a
/
pp.105-110
/
2011
Catwalk structures are temporary walk ways for erection of main cables in suspension bridge. The aerodynamic characteristics of the catwalk structures are not well studied even though the catwalk structures are sensitive to wind action because of its flexibility. Present study demonstrates technical results obtained from wind tunnel tests of various catwalk structures. To obtain the aerostatic force coefficients of the floor system of catwalk, 1/14 and 1/4 scaled partial rigid models were fabricated and tested at the wind tunnel. In order to investigate the Reynolds number effects, the aerostatic force coefficients were measured at various wind velocities ranged from 5m/s to 30m/s. The test results revealed that the Reynolds number effects on aerostatic coefficients were not significant for the catwalk floor systems. An empirical equation for aerostatic force coefficients of catwalk are proposed based on the measured results.
Seo, Jeong-Sik;Shin, Jong-Keun;Hong, Seong-Ho;Choi, Young-Don
Proceedings of the SAREK Conference
/
2007.11a
/
pp.558-563
/
2007
Detached Eddy Simulation(DES) is performed for turbulent flow of the $270^{\circ}$ bend at a Reynolds number of 56,690. A Fine grid generation is used near a wall in order to satisfy the wall boundary condition of y+<1. Turbulence models adopted for DES and Reynolds Average Navier Stokes(RANS) simulation are SST(Shear Stress Transfort) model. Solutions for both streamwise and circumferential velocity components are compared with the experimental data by Lee for $270^{\circ}$ bend and by Chang for $180^{\circ}$ bend.
Proceedings of the Korea Water Resources Association Conference
/
2021.06a
/
pp.60-60
/
2021
Investigating Backward-Facing Step(BFS) flow is important in that it is a representative case for separation flows in various engineering flow systems. There have been a wide range of experimental, theoretical, and numerical studies to investigate the flow characteristics over BFS, such as flow separation, reattachment length and recirculation zone. However, most of such previous studies were concentrated only on the perpendicular step angle. In this study, several numerical investigations on the flow pattern over BFS with various step angles (10° ~ 90°) and expansion ratios (1.48, 2 and 3.27) under different Reynolds numbers (5000 ~ 64000) were carried out, mainly focused on the reattachment length. The numerical simulations were performed using an open source 3D CFD software, OpenFOAM, in which the velocity profiles and turbulence intensities are calculated by RANS (Reynolds Averaged Navier-Stokes equation) and 3D LES (Large Eddy Simulation) turbulence models. Overall, it shows a good agreement between simulations and the experimental data by Ruck and Makiola (1993). In comparison with the results obtained from RANS and 3D LES, it was shown that 3D LES model can capture much better and more details on the velocity profiles, turbulence intensities, and reattachment length behind the step for relatively low Reynolds number(Re < 11000) cases. However, the simulation results by both of RANS and 3D LES showed very good agreement with the experimental data for the high Reynolds number cases(Re > 11000). For Re > 11000, the reattachment length is no longer dependent on the Reynolds number, and it tends to be nearly constant for the step angles larger than 30°.) Based on the calibrated and validated numerical simulations, several additional numerical simulations were also conducted with higher Reynolds number and another expansion ratio which were not considered in the experiments by Ruck and Makiola (1993).
In this paper, a stabilized large eddy simulation technique is developed to predict turbulent flow with high Reynolds number. Streamline Upwind Petrov-Galerkin (SUPG) stabilized method and three-step technique are both implemented for the finite element formulation of Smagorinsky sub-grid scale (SGS) model. Temporal discretization is performed using three-step technique with viscous term treated implicitly. And the pressure is computed from Poisson equation derived from the incompressible condition. Then two numerical examples of turbulent flow with high Reynolds number are discussed. One is lid driven flow at Re = $10^5$ in a triangular cavity, the other is turbulent flow past a square cylinder at Re = 22000. Results show that the present technique can effectively suppress the instabilities of turbulent flow caused by traditional FEM and well predict the unsteady flow even with coarse mesh.
Transactions of the Korean Society of Mechanical Engineers
/
v.19
no.12
/
pp.3329-3343
/
1995
The interaction of mixed convection and surface radiation in a printed circuit board(PCB) is investigated numerically. The electronic equipment is modeled by a two-dimensional channel with three hot blocks. In order to calculate the turbulent flow characteristics, the low Reynolds number k-.epsilon. model which is proposed by Launder and Sharma is applied. The S-4 approximation is used to solve the radiative transfer equation. The effects of the Reynolds number and geometric configuration variation of PCB on the flow and heat transfer characteristics are analyzed. As the results of this study, it is found that the thermal boundary layer occured at adiabatic wall in case with thermal radiation included, and the effect of radiation is also found to be insignificant for high Reynolds numbers. It is found, as well, that the heat transfer increases as the Reynolds number and block space increase and the channel height decreases and the heat transfer of vertical channel is greater than that of horizontal channel.
Transactions of the Korean Society for Noise and Vibration Engineering
/
v.15
no.1
s.94
/
pp.87-95
/
2005
This paper proposes a method to calculate the characteristics of a coupled hydrodynamic journal and thrust bearing of a HDD spindle motor. The governing equations for the journal and thrust bearings are the two dimensional Reynolds equations in $\theta z$ and $ r\theta$ planes, respectively. Finite element method is appropriately applied to analyze the coupled journal and thrust bearing by satisfying the continuity of mass and pressure at the interface between the journal and thrust bearings. The pressure in a coupled bearing is calculated by applying the Reynolds boundary condition and compared with that by using the Half-Sommerfeld boundary condition. The static characteristics are obtained by integrating the pressure along the fluid film. The flying height of spindle motor is measured to verify the proposed analytical result. This research shows that the proposed method can describe HDB in a HDD system more accurately and realistically than the separate analysis of a journal or thrust bearing.
Transactions of the Korean Society of Mechanical Engineers B
/
v.31
no.1
s.256
/
pp.29-39
/
2007
A second-moment closure is applied to the prediction of a homogeneous turbulent shear flow laden with mono-size particles. The closure is curried out based on a 'two-fluid' methodology in which both carrier and dispersed phases are considered in the Eulerian frame. To reduce the number of coupled differential equations to be solved, Reynolds stress transport equations and algebraic stress models are judiciously combined to obtain the Reynolds stress of carrier and dispersed phases in the mean momentum equation. That is, the Reynolds stress components for carrier and dispersed phases are solved by modelled transport equations, but the fluid-particle velocity covariance tensors are treated by the algebraic models. The present predictions for all the components of Reynolds stresses are compared to the DNS data. Reasonable agreements are observed in all the components, and the effects of the coupling of carrier and dispersed phases are properly captured in every aspects.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.