• 제목/요약/키워드: Reynolds Stress Equation Model

검색결과 69건 처리시간 0.035초

레이놀즈응력모델을 사용한 곡면상의 난류경계층에 대한 수치해석 (Prediction of Turbulent Boundary Layers on Convex Surfaces with Reynolds Stress Closure Model)

  • 김광용
    • 대한기계학회논문집
    • /
    • 제15권5호
    • /
    • pp.1717-1726
    • /
    • 1991
  • 본 연구에서는 낮은 레이놀즈수 영역에도 적용될 수 있는 레이놀즈응력모델의 개발을 위해, 우선 벽근처 영역에서 사용되는 실험식(벽법칙)을 Hassid와 Poreh에 의 해 개발된 1-방정식모델로 대체하고 이를 레이놀즈응력모델과 접속시키는 방식을 사용 하였다. Hassid-Poreh의 1-방정식모델은 이미 Gibson등에 의해 그 성능이 평가되어 압력구배가 크지 않은 경계층유동의 낮은 레이놀즈수 영역에서 매우 좋은 결과를 보여 줌이 밝혀졌다. 본 연구에서는 곡면위의 난류경계층에 대해 위에서 설명한 바 있는 난류모델을 적용함에 있어 Gillis등과 Gibson등에 의해 실험된, 각각 곡률이 큰 경우 와 작은 경우의 대표적인 유동을 선택하여 모델의 성능을 시험하였다. 1-방정식모델 내에 포함된 길이차원(length scale)에 대해서는 곡률을 고려한 수정이 이루어졌다.

축을 중심으로 회전하는 관유동에서 난류열전달의 모형화 (Modeling of Turbulent Heat Transfer in an Axially Rotating Pipe Flow)

  • 신종근
    • 대한기계학회논문집B
    • /
    • 제31권9호
    • /
    • pp.741-753
    • /
    • 2007
  • The elliptic conceptual second moment model for turbulent heat fluxes, which was proposed on the basis of elliptic-relaxation equation, was applied to calculate the turbulent heat transfer in an axially rotating pipe flow. The model was closely linked to the elliptic blending model which was used for the prediction of Reynolds stress. The effects of rotation on the turbulent characteristics including the mean velocity, the Reynolds stress tensor, the mean temperature and the turbulent heat flux vector were examined by the model. The numerical results by the present model were directly compared to the DNS as well as the experimental results to assess the performance of the model predictions and showed that the behaviors of the turbulent heat transfer in the axially rotating pipe flow were satisfactorily captured by the present models.

DES 기법을 이용한 270°곡덕트에서 발달하는 난류 유동의 수치해석 (Detached Eddy Simulation of a Developing Turbulent Flow in a 270° Curved Duct)

  • 서정식;신종근;최영돈;이주철
    • 대한기계학회논문집B
    • /
    • 제32권6호
    • /
    • pp.471-478
    • /
    • 2008
  • Detached Eddy Simulation (DES) is performed for developing turbulent flow of the $270^{\circ}$ curved duct at a Reynolds number of 56,690. The curvature ratio on the basis of a centric radius $R_c$ and a duct height H is 3.357. Turbulence models adopted are k-$\omega$ model for Reynolds Average Navier-Stokes (RANS) equation Simulation and Shear Stress Transport (SST) model for DES. DES is used as the hybrid computation technique combined with RANS-SST and Large Eddy Simulation (LES). Predicted results are compared with measured results including the distributions of Reynolds stresses and the flow characteristics on the symmetric plane of curved duct are presented. Judging from the comparison between the predicted and the measured results, the DES approach is applicable to calculate the developing turbulent flow in a $270^{\circ}$ curved duct.

난류모형을 적용한 장애물이 있는 파이프내의 유동장 수치시뮬레이션 (Numerical Simulation of Pipe Flow with an Obstacle by applying Turbulent Models)

  • 곽승현
    • 한국항해항만학회지
    • /
    • 제29권6호
    • /
    • pp.523-528
    • /
    • 2005
  • 장애물이 있는 배관속의 점성유동을 다양한 난류모형을 적용하여 해석하였다. 적용한 난류모형은 k-$\epsilon$, k-$\omega$, Spalart-Allmaras, Reynolds stress 이고, 배관내의 격자는 구조격자(structured grid) 이다. 속도벡터, 압력분포 반복계산(iteration)에 의한 잔류치(residual), 양정(dynamic head) 등을 모사하였다. 4개의 난류모형을 배관유동에 적용하였고 상용 프로그램을 사용하여 해석을 수행하였다.

수치해를 이용한 선박의 점성저항 해석 (Visous resistance analysis of a ship using numerical solutions)

  • 곽영기
    • 한국해양공학회지
    • /
    • 제11권2호
    • /
    • pp.100-106
    • /
    • 1997
  • Viscous flow around an actual ship is calculated by an use of RANS(Reynolds-averaged Navier-Stokes) solver. Reynolds stress is modelled by using k-$\varepsilon$ turbulence model and the law of wall is applied near the body. Body fitted coordinates are introduced for the treatment of the complex boundary of the ship hull form. The transformed equations in the computational domain are numerically solved by an employment of FVM(Finite Volume Method). SIMPLE(Semi-Implcit Pressure Linked Equation) method is adopted in the calculation of pressure and the solution of the disssssssscretized equation is obtained by the line-by-line method with the use of TDMA(Tri-Diagonal Matrix Algorithme). The subject ship model of actual calculation is 4,410 TEU class container carrier. For 4 geosim models the calculated viscous resistancce values are compared with the model test results and analyzed on their componentss. The resistance performance of an actual ship is predicted very resonably, so this mothod may be utilized as a design tool of hull form.

  • PDF

한계전단응력형태의 Bair & Winer 리올로지 모델을 사용한 선접촉 탄성유체윤활해석 (Elastohydrodynamic Lubrication of Line Contacts Incorporating Bair & Winer's Limiting Shear Stress Rheological Model)

  • 이희성;양진승
    • Tribology and Lubricants
    • /
    • 제14권1호
    • /
    • pp.85-93
    • /
    • 1998
  • The Bair & Winer's limiting shear stress rheological model is incorporated into the Reynolds equation to successfully predict the traction and film thickness for an isothermal line contact using the primary rheological properties. The modified WLF viscosity model and Barus viscosity model are also adapted for the realistic prediction of EHD tractional behavior. The influences of the limiting shear stress and slide-roll ratio on the pressure spike, film thickness, distribution of shear stress and nonlinear variation of traction are examined. A good agreement between the disc machine experiments and numerical traction prediction has been established. The film thickness due to non-Newtonian effects does not deviate significantly from the fdm thicknesss with Newtonian lubricant.

정사각 직관과 $180^{\circ}$ 곡관내 난류유동의 레이놀즈응력모형 적용 (Turbulent Flow through a Square Straight and Curved Duct with Reynolds Stress Models)

  • 전건호;최영돈
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2000년도 춘계학술대회논문집B
    • /
    • pp.771-776
    • /
    • 2000
  • Fine grid calculations are reported for the developing turbulent flow in a straight duct and a curved duct of square cross-section with a radius of curvature to hydraulic diameter ratio ${\delta}=R_c/H_H=3.357$ and a bend angle of 180 deg. A sequence of modeling refinements is introduced; the replacement of wall function by a fine mesh across the sublayer and a low Reynolds number second moment closure up to the near wall sublayer in which the non-linear return to isotropy model and the cubic-quasi-isotropy model for the pressure strain are adopted; and the introduction of a multiple source model for the exact dissipation rate equation. Each refinement is shown to lead to an appreciable improvement in the agreement between measurement and computation.

  • PDF

$180^{\circ}$곡관을 갖는 정사각 단면 덕트에서의 란류류동 해석 (Analysis of Turbulent Flow in a Square Duct with a $180^{\circ}$ Bend)

  • ;김명호;문찬;최영돈
    • 대한기계학회논문집
    • /
    • 제12권3호
    • /
    • pp.607-621
    • /
    • 1988
  • 본 연구에서는 미세격자구역에서 속도에 관한 모든 운송방정식(transport equation)과 압력방정식을 푸는 완전미세격자법을 채택하였고 거친 격자구역에서는 K, $\varepsilon$ 방정식모델과 Boussinesq의 난류모델로 과점성계수를 구하는 방법 대신 레이놀 즈응력을 대수식으로 직접 구하는 대수응력모델(algebraic stress model, ASM)을 사용하여 해석하였다.

Thermal Striping 해석 난류모델 평가 (Evaluation of Turbulence Models for Analysis of Thermal Striping)

  • 최석기;남호윤;위명환;어재혁;김성오
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2005년도 춘계 학술대회논문집
    • /
    • pp.142-147
    • /
    • 2005
  • A numerical study of evaluation of turbulence models for thermal striping phenomenon is performed. The turbulence models chosen in the present study are the two-layer model, the shear stress transport (SST) model and the V2-f model. These three models are applied to the analysis of the triple jet flow with the same velocity but different temperature. The unsteady Reynolds-averaged Navier-Stokes (URANS) equation method is used together with the SIMPLE algorithm. The results of the present study show that the temporal oscillation of temperature is predicted only by the V2-f model, and the accuracy of the mean velocity, the turbulent shear stress and the mean temperature is a little dependent on the turbulence model used. The the two-layer model and the SST model shows nearly the same capability of predicting the thermal striping and the amplitude of the temperature fluctuation is predicted best by the V2-f model.

  • PDF

DES 모형을 이용한 270도 곡관 내 난류유동에 관한 수치해석 (Numerical investigation of Turbulent Flow in $270^{\circ}$ Bend using DES approaches)

  • 서정식;신종근;홍성호;최영돈
    • 대한설비공학회:학술대회논문집
    • /
    • 대한설비공학회 2007년도 동계학술발표대회 논문집
    • /
    • pp.558-563
    • /
    • 2007
  • Detached Eddy Simulation(DES) is performed for turbulent flow of the $270^{\circ}$ bend at a Reynolds number of 56,690. A Fine grid generation is used near a wall in order to satisfy the wall boundary condition of y+<1. Turbulence models adopted for DES and Reynolds Average Navier Stokes(RANS) simulation are SST(Shear Stress Transfort) model. Solutions for both streamwise and circumferential velocity components are compared with the experimental data by Lee for $270^{\circ}$ bend and by Chang for $180^{\circ}$ bend.

  • PDF