• Title/Summary/Keyword: Reynolds Number Effect

Search Result 701, Processing Time 0.029 seconds

Reynolds Number Effect on Regenerative Pump Performance in Low Reynolds Number Range

  • Horiguchi, Hironori;Yumiba, Daisuke;Tsujimoto, Yoshinobu;Sakagami, Masaaki;Tanaka, Shigeo
    • International Journal of Fluid Machinery and Systems
    • /
    • v.1 no.1
    • /
    • pp.101-108
    • /
    • 2008
  • The effect of Reynolds number on the performance of a regenerative pump was examined in a low Reynolds number range in experiment. The head of the regenerative pump increased at low flow rates and decreased at high flow rates as the Reynolds number decreased. The computation of the internal flow was made to clarify the cause of the Reynolds number effect. At low flow rates, the head is decreased with increasing the Reynolds number due to the decrease of the shear force exerted by the impeller caused by the increase of leakage and hence local flow rate. At higher flow rates, the head is increased with increasing the Reynolds number with decreased loss at the inlet and outlet as well as the decreased shear stress on the casing wall.

Numerical simulation study of the Reynolds number effect on two bridge decks based on the deterministic vortex method

  • Zhou, Zhiyong;Ma, Rujin
    • Wind and Structures
    • /
    • v.13 no.4
    • /
    • pp.347-362
    • /
    • 2010
  • Researches on the Reynolds number effect on bridge decks have made slow progress due to the complicated nature of the subject. Heretofore, few studies on this topic have been made. In this paper, aerostatic coefficients, Strouhal number ($S_t$), pressure distribution and Reynolds number ($R_e$) of Great Belt East Bridge and Sutong Bridge were investigated based on deterministic vortex method (DVM). In this method, Particle Strength Exchange (PSE) was chosen to implement the simulation of the flow around bluff body and to analyze the micro-mechanism of the aerostatic loading and Reynolds number effect. Compared with the results obtained from wind tunnel tests, reliability of numerical simulation can be proved. Numerical results also showed that the Reynolds number effect on aerostatic coefficients and Strouhal number of the two bridges can not be neglected. In the range of the Reynolds number from $10^5$ to $10^6$, it has great effect on the Strouhal number of Sutong Bridge, while the St is difficult to obtain from wind tunnel tests in this range.

Influence of Reynolds Number and Scale on Performance Evaluation of Lift-type Vertical Axis Wind Turbine by Scale-model Wind Tunnel Tests

  • Tanino, Tadakazu;Nakao, Shinichiro;Miyaguni, Takeshi;Takahashi, Kazunobu
    • International Journal of Fluid Machinery and Systems
    • /
    • v.4 no.2
    • /
    • pp.229-234
    • /
    • 2011
  • For Lift-type Vertical Axis Wind Turbine (VAWT), it is difficult to evaluate the performance through the scale-model wind tunnel tests, because of the scale effect relating to Reynolds number. However, it is beneficial to figure out the critical value of Reynolds number or minimum size of the Lift-type VAWT, when designing this type of micro wind turbine. Therefore, in this study, the performance of several scale-models of Lift-type VAWT (Reynolds number : $1.5{\times}10^4$ to $4.6{\times}10^4$) was investigated. As a result, the Reynolds number effect depends on the blade chord rather than the inlet velocity. In addition, there was a transition point of the Reynolds number to change the dominant driving force from Drag to Lift.

A Study on the Development of Low Reynolds Number k-$\varepsilon$ Turbulence Model (저레이놀즈수 k-$\varepsilon$난류모형 개선에 관한 연구)

  • 김명호;신종근;최영돈
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.10
    • /
    • pp.1940-1954
    • /
    • 1992
  • Fine grid computations were attempted to analyze the turbulent flows in the near wall low Reynolds number region and the numerical analyses were incorporated by a finite-volume discretization with full find grid system and low Reynolds number k-.epsilon. model was employed in this region. For the improvement of low Reynolds number k-.epsilon. model, modification coefficient of eddy viscosity $f_{\mu}$ was derived as a function of turbulent Reynolds number $R_{+}$ and nondimensional length $y^{+}$ from the concept of two length scales of dissipation rate of turbulent kinetic energy. The modification coefficient $f_{\epsilon}$ in .epsilon. transport equation was also derived theoretically. In the turbulent kinetic energy equation, pressure diffusion term was added in order to consider low Reynolds number region effect. The main characteristics of this low Reynolds number k-.epsilon. model were founded as : (1) In high Reynolds number region, the present model has limiting behavior which approaches to the high Reynolds number model. (2) Present low Reynolds number k-.epsilon. model dose not need additional empirical constants for the transport equations of turbulent kinetic energy and dissipation of turbulent kinetic energy in order to consider wall effect. Present low Reynolds number turbulence model was tested in the pipe flow and obtained improved results in velocity profiles and Reynolds stress distributions compared with those from other k-.epsilon. models.s.s.

EFFECTS OF THE REYNOLDS AND KNUDSEN NUMBERS ON THE FLOW OF A MICRO-VISCOUS PUMP (Reynolds 수와 Knudsen 수가 초소형 점성펌프에 미치는 영향)

  • Kang, D.J.;Ivanova, Ivelina Ivanova
    • Journal of computational fluids engineering
    • /
    • v.13 no.2
    • /
    • pp.14-19
    • /
    • 2008
  • Effects of the Reynolds and Knudsen numbers on a micro-viscous pump are studied by using a Navier-Stokes code based on a finite volume method. The micro viscous pump consists of a circular rotor and a two-dimensional channel. The channel walls are treated by using a slip velocity model. The Reynolds number is studied in the range of $0.1{\sim}50$. The Knudsen number varies from 0.01 to 0.1. Numerical solutions show that the pump works efficiently when two counter rotating vortices formed on both sides of the rotor have the same size and intensity. As the Reynolds number increases, the size and intensity of the vortex on the inlet side of the pump decrease. It disappears when the Reynolds number is larger than about Re=20. The characteristics of the performance of the pump is shown to deteriorate, in terms of mean velocity and pressure rise, as the Reynolds number increases. The Knudsen number shows a different effect on the characteristics of the pump. As it increases, the mean velocity and pressure rise decrease but the characteristics of the vortex flow remains unchanged, unlike the effect of Reynolds number.

Measurement of Reynolds Number Effects on Cavitation Performance in a Turbopump Inducer (레이놀즈 수가 터보펌프 인듀서 캐비테이션 성능에 미치는 영향 측정)

  • Kim, Junho;Song, Seung Jin
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2017.05a
    • /
    • pp.820-823
    • /
    • 2017
  • This study experimentally investigate how the Reynolds number affect cavitation performance in a turbopump inducer using water. Cavitation performance has been determined by the static pressure measured at the inlet of the inducer. Reynolds number has been varied by varying water temperature and inducer rotational speed to maintain constant non-dimensional thermal parameter. At low non-dimensional thermal parameter, the critical cavitation number is insensitive to Reynolds number. However, at high non-dimensional thermal parameter, the critical cavitation number increased as Reynolds number increases. Thus, cavitation performance is deteriorated as Reynolds number increases when thermal effect exists.

  • PDF

Effect of Reynolds number on compressible convex-corner flows

  • Chung, Kung-Ming;Chang, Po-Hsiung;Chang, Keh-Chin
    • Advances in aircraft and spacecraft science
    • /
    • v.1 no.4
    • /
    • pp.443-454
    • /
    • 2014
  • An experimental study was conducted to investigate the effect of Reynolds number on compressible convex-corner flows, which correspond to an upper surface of a deflected flap of an aircraft wing. The flow is naturally developed along a flat plate with two different lengths, resulting in different incoming boundary layer thicknesses or Reynolds numbers. It is found that boundary layer Reynolds number, ranging from $8.04{\times}10^4$ to $1.63{\times}10^5$, has a minor influence on flow expansion and compression near the corner apex in the transonic flow regime, but not for the subsonic expansion flow. For shock-induced separated flow, higher peak pressure fluctuations are observed at smaller Reynolds number, corresponding to the excursion phenomena and the shorter region of shock-induced boundary layer separation. An explicit correlation of separation length with deflection angle is also presented.

Heat Transfer Characteristics of the Spherical Capsule Storage System Using Paraffins

  • Cho, Keum-Nam;Choi, S. H.
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • v.6
    • /
    • pp.113-123
    • /
    • 1998
  • The present study is to investigate the effect of experimental parameters on the heat transfer characteristics of a spherical capsule storage system using paraffins. N-Tetradecane and mixture of n-Tetradecane 40% and n-Hexadecane 60% were used as paraffins. Water with inorganic material was also tested for the comparison. The experimental parameters were varied for the Reynolds number from 8 to 16 and for the inlet temperature from -7 to 2$^{\circ}C$. Measured local temperatures of spherical capsules in the storage tank were utilized to calculate charging and discharging times, dimensionless thermal storage amount, and the average heat transfer coefficients in the tank. Local charging and discharging times in the storage tank were significantly different. The effect of inlet temperature on charging time was larger than that on discharging time, but the effect of Reynolds number on charging time was smaller than that on discharging time. Charging time of paraffins was faster by 11~72% than that of water with inorganic material, but little difference of discharging time was found among them. The effect of Reynolds number on the dimensionless thermal storage was less during charging process and more during discharging process than the effect of inlet temperature. The effect of the inlet temperature and the Reynolds number on the average heat transfer coefficient of the storage tank was stronger during discharging process than during charging process. The average heat transfer coefficients of the spherical capsule system using paraffins were larger by 40% than those using water.

  • PDF

Aerodynamic Design of a Novel Low-Reynolds-Number Airfoil for Near Space Propellers

  • Zhang, Shunlei;Yang, Xudong;Song, Bifeng;Song, Wenping
    • International Journal of Aerospace System Engineering
    • /
    • v.2 no.1
    • /
    • pp.53-57
    • /
    • 2015
  • For improving the efficiency of near space propellers working over 20km, performances of their streamwise sections, i.e. low-Reynolds-number airfoils which work at $10^4-10^5$ Reynolds numbers, are significant. Based on the low-Reynolds-number CFD technology, this paper designs a novel low-Reynolds-number airfoil. Unsteady characteristics of the laminar separation bubble on novel airfoil and a typical conventional airfoil are studied numerically, and the Reynolds number effect is investigated. Results show that at $10^4-10^5$ Reynolds numbers, unsteady aerodynamic characteristics of the novel airfoil are severely weakened and its lift-to-drag ratio can increase about 100%.

REYNOLDS NUMBER EFFECTS ON TURBULENT PIPE FLOW PART II. INSTANTANEOUS FLOW FIELD,HIGHER-ORDER STATISTICS AND TURBULENT BUDGETS (난류 파이프 유동에서의 레이놀즈 수 영향: Part II. 순간유동장, 고차 난류통계치 및 난류수지)

  • Kang, Chang-Woo;Yang, Kyung-Soo
    • Journal of computational fluids engineering
    • /
    • v.16 no.4
    • /
    • pp.100-109
    • /
    • 2011
  • Large eddy simulation(LES) of fully developed turbulent pipe flow has been performed to investigate the effect of Reynolds number on the flow field at $Re_{\tau}$=180, 395, 590 based on friction velocity and pipe radius. A dynamic subgrid-scale model for the turbulent subgrid-scale stresses was employed to close the governing equations. The mean flow properties, mean velocity profiles and turbulent intensities obtained from the present LES are in good agreement with the previous numerical and experimental results currently available. The Reynolds number effects were observed in the higher-order statistics(Skewness and Flatness factor). Furthermore, the budgets of the Reynolds stresses and turbulent kinetic energy were computed and analyzed to elucidate the effect of Reynolds number on the turbulent structures.