• Title/Summary/Keyword: Reversible Data Hiding

Search Result 68, Processing Time 0.024 seconds

Dual Image Reversible Data Hiding Scheme Based on Secret Sharing to Increase Secret Data Embedding Capacity (비밀자료 삽입용량을 증가시키기 위한 비밀 공유 기반의 이중 이미지 가역 정보은닉 기법)

  • Kim, Pyung Han;Ryu, Kwan-Woo
    • Journal of Korea Multimedia Society
    • /
    • v.25 no.9
    • /
    • pp.1291-1306
    • /
    • 2022
  • The dual image-based reversible data hiding scheme embeds secret data into two images to increase the embedding capacity of secret data. The dual image-based reversible data hiding scheme can transmit a lot of secret data. Therefore, various schemes have been proposed until recently. In 2021, Chen and Hong proposed a dual image-based reversible data hiding scheme that embeds a large amount of secret data using a reference matrix, secret data, and bit values. However, in this paper, more secret data can be embedded than Chen and Hong's scheme. To achieve this goal, the proposed scheme generates polynomials and shared values using secret sharing scheme, and embeds secret data using reference matrix and septenary number, and random value. Experimental results show that the proposed scheme can transmit more secret data to the receiver while maintaining the image quality similar to other dual image-based reversible data hiding schemes.

Histogram-based Reversible Data Hiding Based on Pixel Differences with Prediction and Sorting

  • Chang, Ya-Fen;Tai, Wei-Liang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.6 no.12
    • /
    • pp.3100-3116
    • /
    • 2012
  • Reversible data hiding enables the embedding of messages in a host image without any loss of host content, which is proposed for image authentication that if the watermarked image is deemed authentic, we can revert it to the exact copy of the original image before the embedding occurred. In this paper, we present an improved histogram-based reversible data hiding scheme based on prediction and sorting. A rhombus prediction is employed to explore the prediction for histogram-based embedding. Sorting the prediction has a good influence on increasing the embedding capacity. Characteristics of the pixel difference are used to achieve large hiding capacity while keeping low distortion. The proposed scheme exploits a two-stage embedding strategy to solve the problem about communicating peak points. We also present a histogram shifting technique to prevent overflow and underflow. Performance comparisons with other existing reversible data hiding schemes are provided to demonstrate the superiority of the proposed scheme.

An Improved Interpolation Method using Pixel Difference Values for Effective Reversible Data Hiding (효과적인 가역 정보은닉을 위한 픽셀의 차이 값을 이용한 개선된 보간법)

  • Kim, Pyung Han;Jung, Ki Hyun;Yoon, Eun-Jun;Ryu, Kwan-Woo
    • Journal of Korea Multimedia Society
    • /
    • v.24 no.6
    • /
    • pp.768-788
    • /
    • 2021
  • The reversible data hiding technique safely transmits secret data to the recipient from malicious attacks by third parties. In addition, this technique can completely restore the image used as a transmission medium for secret data. The reversible data hiding schemes have been proposed in various forms, and recently, the reversible data hiding schemes based on interpolation are actively researching. The reversible data hiding scheme based on the interpolation method expands the original image into the cover image and embed secret data. However, the existing interpolation-based reversible data hiding schemes did not embed secret data during the interpolation process. To improve this problem, this paper proposes embedding the first secret data during the image interpolation process and embedding the second secret data into the interpolated cover image. In the embedding process, the original image is divided into blocks without duplicates, and the maximum and minimum values are determined within each block. Three way searching based on the maximum value and two way searching based on the minimum value are performed. And, image interpolation is performed while embedding the first secret data using the PVD scheme. A stego image is created by embedding the second secret data using the maximum difference value and log function in the interpolated cover image. As a result, the proposed scheme embeds secret data twice. In particular, it is possible to embed secret data even during the interpolation process of an image that did not previously embed secret data. Experimental results show that the proposed scheme can transmit more secret data to the receiver while maintaining the image quality similar to other interpolation-based reversible data hiding schemes.

High-Performance Reversible Data Hiding with Overflow/Underflow Avoidance

  • Yang, Ching-Yu;Hu, Wu-Chih
    • ETRI Journal
    • /
    • v.33 no.4
    • /
    • pp.580-588
    • /
    • 2011
  • This paper proposes reversible data hiding using minimum/maximum preserved overflow/underflow avoidance (MMPOUA). The proposed MMPOUA algorithm consists of three main steps. These steps include the minimum (or maximum) pixel fixing, pixel squeezing, and pixel isolation. The aims of pixel fixing are to keep the minimum (or maximum) pixel of a host block unchanged and prevent the occurrence of overflow/underflow. Both the pixel squeezing and pixel isolation supply hiding storage while keeping the amount of distortion low. The proposed method can avoid (or significantly reduce) the overhead bits used to overcome overflow/underflow issues. At an embedding rate of 0.15 bpp, the proposed algorithm can achieve a PSNR value of 48.52 dB, which outperforms several existing reversible data hiding schemes. Furthermore, the algorithm performed well in a variety of images, including those in which other algorithms had difficulty obtaining good hiding storage with high perceived quality.

An advanced reversible data hiding algorithm based on the similarity between neighboring pixels

  • Jung, Soo-Mok
    • Journal of the Korea Society of Computer and Information
    • /
    • v.21 no.2
    • /
    • pp.33-42
    • /
    • 2016
  • In this paper, an advanced reversible data hiding algorithm which takes the advantage of the spatial locality in image was proposed. Natural image has a spatial locality. The pixel value of a natural image is similar to the values of neighboring pixels. So, using the neighboring pixel values, it is possible to precisely predict the pixel value. Frequency increases significantly at the peak point of the difference histogram using the predicted values. Therefore, it is possible to increase the amount of data to be embedded. By using the proposed algorithm, visually high quality stego-image can be generated, the original cover image and the embedded data can be extracted from the stego-image without distortion. The embedding data into the cover image of the proposed algorithm is much lager than that of the previous algorithm. The performance of the proposed algorithm was verified by experiment. The proposed algorithm is very useful for the reversible data hiding.

Reversible Data Hiding Scheme Based on Maximum Histogram Gap of Image Blocks

  • Arabzadeh, Mohammad;Rahimi, Mohammad Reza
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.6 no.8
    • /
    • pp.1964-1981
    • /
    • 2012
  • In this paper a reversible data hiding scheme based on histogram shifting of host image blocks is presented. This method attempts to use full available capacity for data embedding by dividing the image into non-overlapping blocks. Applying histogram shifting to each block requires that extra information to be saved as overhead data for each block. This extra information (overhead or bookkeeping information) is used in order to extract payload and recover the block to its original state. A method to eliminate the need for this extra information is also introduced. This method uses maximum gap that exists between histogram bins for finding the value of pixels that was used for embedding in sender side. Experimental results show that the proposed method provides higher embedding capacity than the original reversible data hiding based on histogram shifting method and its improved versions in the current literature while it maintains the quality of marked image at an acceptable level.

New reversible data hiding algorithm based on difference expansion method

  • Kim, Hyoung-Joong;Sachnev, Vasiliy;Kim, Dong-Hoi
    • Journal of Broadcast Engineering
    • /
    • v.12 no.2
    • /
    • pp.112-119
    • /
    • 2007
  • Reversible data embedding theory has marked a new epoch for data hiding and information security. Being reversible, the original data and the embedded data as well should be completely restored. Difference expansion transform is a remarkable breakthrough in reversible data hiding scheme. The difference expansion method achieves high embedding capacity and keeps the distortion low. This paper shows that the difference expansion method with simplified location map, and new expandability and changeability can achieve more embedding capacity while keeping the distortion almost the same as the original expansion method.

A Robust Reversible Data Hiding Scheme with Large Embedding Capacity and High Visual Quality

  • Munkbaatar, Doyoddorj;Park, Young-Ho;Rhee, Kyung-Hyune
    • Journal of Korea Multimedia Society
    • /
    • v.15 no.7
    • /
    • pp.891-902
    • /
    • 2012
  • Reversible data hiding scheme is a form of steganography in which the secret embedding data can be retrieved from a stego image for the purpose of identification, copyright protection and making a covert channel. The reversible data hiding should satisfy that not only are the distortions due to artifacts against the cover image invisible but also it has large embedding capacity as far as possible. In this paper, we propose a robust reversible data hiding scheme by exploiting the differences between a center pixel and its neighboring pixels in each sub-block of the image to embed secret data into extra space. Moreover, our scheme enhances the embedding capacity and can recover the embedded data from the stego image without causing any perceptible distortions to the cover image. Simulation results show that our proposed scheme has lower visible distortions in the stego image and provides robustness to geometrical image manipulations, such as rotation and cropping operations.

Reversible data hiding algorithm using spatial locality and the surface characteristics of image

  • Jung, Soo-Mok;On, Byung-Won
    • Journal of the Korea Society of Computer and Information
    • /
    • v.21 no.8
    • /
    • pp.1-12
    • /
    • 2016
  • In this paper, we propose a very efficient reversible data hiding algorithm using spatial locality and the surface characteristics of image. Spacial locality and a variety of surface characteristics are present in natural images. So, it is possible to precisely predict the pixel value using the locality and surface characteristics of image. Therefore, the frequency is increased significantly at the peak point of the difference histogram using the precisely predicted pixel values. Thus, it is possible to increase the amount of data to be embedded in image using the spatial locality and surface characteristics of image. By using the proposed reversible data hiding algorithm, visually high quality stego-image can be generated, the embedded data and the original cover image can be extracted without distortion from the stego-image, and the embedding data are much greater than that of the previous algorithm. The experimental results show the superiority of the proposed algorithm.

Reversible Data Hiding Algorithm Based on Pixel Value Ordering and Edge Detection Mechanism

  • Nguyen, Thai-Son;Tram, Hoang-Nam;Vo, Phuoc-Hung
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.16 no.10
    • /
    • pp.3406-3418
    • /
    • 2022
  • Reversible data hiding is an algorithm that has ability to extract the secret data and to restore the marked image to its original version after data extracting. However, some previous schemes offered the low image quality of marked images. To solve this shortcoming, a new reversible data hiding scheme based on pixel value ordering and edge detection mechanism is proposed. In our proposed scheme, the edge image is constructed to divide all pixels into the smooth regions and rough regions. Then, the pixels in the smooth regions are separated into non overlapping blocks. Then, by taking advantages of the high correlation of current pixels and their adjacent pixels in the smooth regions, PVO algorithm is applied for embedding secret data to maintain the minimum distortion. The experimental results showed that our proposed scheme obtained the larger embedding capacity. Moreover, the greater image quality of marked images are achieved by the proposed scheme than that other previous schemes while the high EC is embedded.