• Title/Summary/Keyword: Reverse bias

Search Result 143, Processing Time 0.025 seconds

Rapid Thermal Alloy of Fabricated Diode by Rapid Thermal Diffusion (고속 열확산에 의해 제작된 다이오드의 Rapid Thermal Alloy)

  • 이동엽;이영희
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.29A no.2
    • /
    • pp.63-67
    • /
    • 1992
  • Shallow $p^{+}-n,n^{+}-p$ diodes have been fabricated using rapid thermal diffusion by solid diffusion source and rapid thermal alloying with pure Aluminum. Diode area and junction depth are designed about 2.83$[\times}10^{-3}cm^{2}$ and 250nm, respectively. Electrical characteristics of $p^{+}-n$ diode show that the ideality factor is 1.04 and reverse current density is 29.3nA/$cm^{2}$, respectively. On the other hand, those of $n^{+}-p$ diode show that the ideality factor is 1.05 and reverse current density is 85.2pA/$cm^{2}$. The reverse currents are measured at 5V reverse bias after rapid thermal alloying for all the measurement.

  • PDF

Probeless Estimation of Electroluminescence Intensities Based on Photoluminescence Measurements of GaN-Based Light-Emitting Diodes

  • Kim, Jongseok;Jeong, Hoon;Choi, Won-Jin;Jung, Hyundon
    • Current Optics and Photonics
    • /
    • v.5 no.2
    • /
    • pp.173-179
    • /
    • 2021
  • The electroluminescence (EL) intensities of GaN-based light-emitting diodes (LEDs) are estimated based on their photoluminescence (PL) properties. The PL intensity obtained under open-circuit conditions is divided into two parts: the PL intensity under a forward bias lower than the optical turn-on voltage, and the difference between the PL intensities under open-circuit conditions and under forward bias. The luminescence induced by photoexcitation under a constant forward bias lower than the optical turn-on voltage is primarily the PL from the excited area of the LED. In contrast the intensity difference, obtained by subtracting the PL intensity under the forward bias from that under open-circuit conditions, contains the EL induced by the photocarriers generated during photoexcitation. In addition, a reverse photocurrent is generated during photoexcitation under constant forward bias across the LED, and can be correlated with the PL-intensity difference. The relationship between the photocurrent and PL-intensity difference matches well the relationship between the injection current and EL intensity of LEDs. The ratio between the photocurrent generated under a bias and the short-circuit current is related to the ratio between the PL-intensity difference and the PL intensity under open-circuit conditions. A relational expression consisting of the ratios, short-circuit current, and PL under open-circuit conditions is proposed to estimate the EL intensity.

Effect of High Temperature Annealing on the Characteristics of SiC Schottky Diodes (고온 열처리 공정이 탄화규소 쇼트키 다이오드 특성에 미치는 영향)

  • Cheong, Hui-Jong;Bahng, Wook;Kang, In-Ho;Kim, Sang-Cheol;Han, Hyun-Sook;Kim, Hyeong-Woo;Kim, Nam-Kyun;Lee, Yong-Jae
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.19 no.9
    • /
    • pp.818-824
    • /
    • 2006
  • The effects of high-temperature process required to fabricate the SiC devices on the surface morphology and the electrical characteristics were investigated for 4H-SiC Schottky diodes. The 4H-SiC diodes without a graphite cap layer as a protection layer showed catastrophic increase in an excess current at a forward bias and a leakage current at a reverse bias after high-temperature annealing process. Moreover it seemed to deviate from the conventional Schottky characteristics and to operate as an ohmic contact at the low bias regime. However, the 4H-SiC diodes with the graphite cap still exhibited their good electrical characteristics in spite of a slight increase in the leakage current. Therefore, we found that the graphite cap layer serves well as the protection layer of silicon carbide surface during high-temperature annealing. Based on a closer analysis on electric characteristics, a conductive surface transfiguration layer was suspected to form on the surface of diodes without the graphite cap layer during high-temperature annealing. After removing the surface transfiguration layer using ICP-RIE, Schottky diode without the graphite cap layer and having poor electrical characteristics showed a dramatic improvement in its characteristics including the ideality factor[${\eta}$] of 1.23, the schottky barrier height[${\Phi}$] of 1.39 eV, and the leakage current of $7.75\{times}10^{-8}\;A/cm^{2}$ at the reverse bias of -10 V.

Improvement of Sensing Performance on Nasicon Amperometric NO2 Sensors (나시콘 전류검출형 NO2 센서의 성능개선)

  • Kim, Gwi-Yeol
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.20 no.10
    • /
    • pp.912-917
    • /
    • 2007
  • Many electrochemical power devices such as solid state batteries and solid oxide fuel cell have been studied and developed for solving energy and environmental problems. An amperometric gas sensor usually generates sensing signal of electric current along the proportion of the concentration of target gas under the condition of limiting current. For narrow variations of gas concentration, the amperometric gas sensor can show higher precision than a potentiometric gas sensor does. In additional, cross sensitivities to interfering gases can possibly be mitigated by choosing applied voltage and electrode materials properly. In order to improve the sensitivity to $NO_2$, the device was attached with Au reference electrode to form the amperometric gas sensor device with three electrodes. With the fixed bias voltage being applied between the sensing and counter electrodes, the current between the sensing and reference electrodes was measured as a sensing signal. The response to $NO_2$ gas was obviously enhanced and suppressed with a positive bias, respectively, while the reverse current occurred with a negative bias. The way to enhance the sensitivity of $NO_2$ gas sensor was thus realized. It was shown that the response to $NO_2$ gas could be enhanced sensitivity by changing the bias voltage.

Fabrication and Electrical Transport Characteristics of All-Perovskite Oxide DyMnO3/Nb-1.0 wt% Doped SrTiO3 Heterostructures

  • Wang, Wei Tian
    • Korean Journal of Materials Research
    • /
    • v.30 no.7
    • /
    • pp.333-337
    • /
    • 2020
  • Orthorhombic DyMnO3 films are fabricated epitaxially on Nb-1.0 wt%-doped SrTiO3 single crystal substrates using pulsed laser deposition technique. The structure of the deposited DyMnO3 films is studied by X-ray diffraction, and the epitaxial relationship between the film and the substrate is determined. The electrical transport properties reveal the diodelike rectifying behaviors in the all-perovskite oxide junctions over a wide temperature range (100 ~ 340 K). The forward current is exponentially related to the forward bias voltage, and the extracted ideality factors show distinct transport mechanisms in high and low positive regions. The leakage current increases with increasing reverse bias voltage, and the breakdown voltage decreases with decrease temperature, a consequence of tunneling effects because the leakage current at low temperature is larger than that at high temperature. The determined built-in potentials are 0.37 V in the low bias region, and 0.11 V in the high bias region, respectively. The results show the importance of temperature and applied bias in determining the electrical transport characteristics of all-perovskite oxide heterostructures.

Experimental Investigation of Physical Mechanism for Asymmetrical Degradation in Amorphous InGaZnO Thin-film Transistors under Simultaneous Gate and Drain Bias Stresses

  • Jeong, Chan-Yong;Kim, Hee-Joong;Lee, Jeong-Hwan;Kwon, Hyuck-In
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.17 no.2
    • /
    • pp.239-244
    • /
    • 2017
  • We experimentally investigate the physical mechanism for asymmetrical degradation in amorphous indium-gallium-zinc oxide (a-IGZO) thin-film transistors (TFTs) under simultaneous gate and drain bias stresses. The transfer curves exhibit an asymmetrical negative shift after the application of gate-to-source ($V_{GS}$) and drain-to-source ($V_{DS}$) bias stresses of ($V_{GS}=24V$, $V_{DS}=15.9V$) and ($V_{GS}=22V$, $V_{DS}=20V$), but the asymmetrical degradation is more significant after the bias stress ($V_{GS}$, $V_{DS}$) of (22 V, 20 V) nevertheless the vertical electric field at the source is higher under the bias stress ($V_{GS}$, $V_{DS}$) of (24 V, 15.9 V) than (22 V, 20 V). By using the modified external load resistance method, we extract the source contact resistance ($R_S$) and the voltage drop at $R_S$ ($V_{S,\;drop}$) in the fabricated a-IGZO TFT under both bias stresses. A significantly higher RS and $V_{S,\;drop}$ are extracted under the bias stress ($V_{GS}$, $V_{DS}$) of (22 V, 20V) than (24 V, 15.9 V), which implies that the high horizontal electric field across the source contact due to the large voltage drop at the reverse biased Schottky junction is the dominant physical mechanism causing the asymmetrical degradation of a-IGZO TFTs under simultaneous gate and drain bias stresses.

Micro Energy Harvesting System Based On Reverse Electro Wetting On Dielectric (REWOD) (역전기습윤현상을 이용한 소형 에너지 수확장치)

  • Cho, Jin Hyun;Kim, Gil Yeon;Choi, Sang Beak;Jeon, Tae-joon;Kim, Sun Min
    • The KSFM Journal of Fluid Machinery
    • /
    • v.18 no.6
    • /
    • pp.27-30
    • /
    • 2015
  • In this study, we attempted to harvest energy using water droplet based on Reverse Electro Wetting On Dielectric (REWOD) phenomenon between water droplet and dielectric surface without external bias. REWOD device can be fabricated via simple coating process, which is highly economic and easy. We believe that our system is well-suited for IoT(Internet of Things) embedded electronics that require low but consistent electricity. Moreover, our device can be integrated with window to generate electricity upon raindrops.

The Results Comparison of Measurement and Simulations in ISL(Integrated Schottky Logic) Gate (ISL 게이트에서 측정과 시뮬레이션의 결과 비교)

  • 이용재
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.5 no.1
    • /
    • pp.157-165
    • /
    • 2001
  • We analyzed the electrical characteristics of platinum silicide schottky junction to develope the voltage swing in Integrated Schottky Logic gates, and simulated the characteristics with the programs in this junctions. Simulation programs for analytic characteristics are the Medichi tool for device structure, Matlab for modeling and SUPREM V for fabrication process. The silicide junctions consist of PtSi and variable silicon substrate concentrations in ISL gates. Input parameters for simulation characteristics were the same conditions as process steps of the device farications process. The analitic electrical characteristics were the turn-on voltage, saturation current, ideality factor in forward bias, and has shown the results of breakdown voltage between actual characteristics and simulation characteristics in reverse bias. As a result, the forward turn-on voltage, reverse breakdown voltage, barrier height were decreased but saturation current and ideality factor were increased by substrates increased concentration variations.

  • PDF

The Modeling of ISL(Intergrated Schottky Logic) Characteristics by Computer Simulations (컴퓨터 시뮬레이션에 의한 ISL 특성의 모델링)

  • 김태석
    • Journal of Korea Multimedia Society
    • /
    • v.3 no.5
    • /
    • pp.535-541
    • /
    • 2000
  • In this paper, we analyzed the characteristics of schottky junction to develop the voltage swing of ISL, and simulated the characteristics with the programs at this junctions. Simulation programs for analytic characteristics are the SUPREM V, SPICE, Medichi, Matlab. The schottky junction is rectifier contact between platinum silicide and silicon, the characteristics with programs has simulated the same conditions. The analytic parameters were the turn-on voltage, saturation current, ideality factor in forward bias, and has shown the results of breakdown voltage between actual characteristics and simulation characteristics in reverse bias. As a result, th forward turn-on voltage, reverse breakdown voltage, barrier height were decreased but saturation current and ideality factor were increased by substrates increased concentration variations.

  • PDF

Electrical characteristics of SiC schottky diodes treated by the various dry etch methods for a damaged surface (변형막 식각 방법에 따른 탄화규소 쇼트키 다이오드의 전기적 특성)

  • Choi, Young-Min;Kang, In-Ho;Bahng, Wook;Joo, Sung-Jae;Kim, Sang-Cheol;Kim, Nam-Kyun;Kim, Sung-Jin
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.06a
    • /
    • pp.232-233
    • /
    • 2008
  • The 4H-SiC schottky diodes treated by the various dry etch methods were fabricated and electrically characterized. The post etch process including an Inductively Coupled Plasma(ICP) etch and a Neutron Beam Etch(NBE) was performed after a high-temperature activation annealing without graphite cap in order to eliminate the damaged surface generated during the activation annealing. The reverse leakage current of diode treated by ICP was 1/35 times lower than that of the diode without any post etch at the anode bias of -100V, while the reverse leakage current of diode treated by NBE was 1/44 times lower at the same bias.

  • PDF