• Title/Summary/Keyword: Reverse Osmosis (RO)

Search Result 230, Processing Time 0.025 seconds

A Study on the Ethanol Concentration by Osmotic Sink Reverse Osmosis Process (Osmotic Sink Reverse Osmosis Process를 이용한 에탄올의 농축특성에 관한 연구)

  • 이광현;민병렬
    • Membrane Journal
    • /
    • v.2 no.1
    • /
    • pp.33-48
    • /
    • 1992
  • OSRO process was developed and it was confirmed more effective in ethanol concentrating process comparing to reverse osmosis process. It may be industrialized if more effective membrane for OSRO and reverse osmosis, which indicate the value greater than zero, it was shown that OSRO process was more effective than reverse osmosis for the ethanol concentration process. The decrease of feed concentration and flow rate and the increase of applied pressure made more effective operating conditions in OSRO process to concentrate ethanol. From the numerical esults for the multi-plates, theoretical DC values of reverse osmosis and OSRO process was increased as the umber of stages increased. DC values were increased with the increase of applied pressure in same number of stages. The theoretical values of DC by numerical calculation were corresponded to the experimental values within 15% tolerance. DC value was increased proportional to applied pressure and osmotic sink solution flow rate but it was decreased proportional to feed concentration and flow rate. The numerical calculation over the wide ranges inclading experimental condition was proposed in this study.

  • PDF

Recent Progress of Membrane Technology and its New Application for Water Treatment

  • Hiroyuki, Yamamura;Yoshinari, Fusaoka;Masaru, Kurihara
    • Proceedings of the Membrane Society of Korea Conference
    • /
    • 1998.06a
    • /
    • pp.81-94
    • /
    • 1998
  • Nowadays, membrane separation such as reverse osmosis (RO) and ultrafiltration (UF) play an important role in the industrial separation technology. Among desalination technologies available today, reverse osmosis is usually the most economical process for wide range of water salinity. Main applications include production of high purity water, desalination of seawater and brackish water for a drinking water supply, treatment of waste water for environmental protection, and recovery of precious materials from industrial waste water. In this paper, we will mention membrane performance and these practical use focused on reverse osmosis membranes and ultrafiltration membranes recently developed by Toray.

  • PDF

COD removal from industrial wastewater plants using reverse osmosis membrane

  • Madaeni, S.S.;Samieirad, S.
    • Membrane and Water Treatment
    • /
    • v.1 no.4
    • /
    • pp.273-282
    • /
    • 2010
  • Treatment and reuse of industrial wastewater is becoming a major goal due to water scarcity. This may be carried out using membrane separation technology in general and reverse osmosis (RO) in particular. In the current study, polyamide (FT-30) membrane was employed for treatment of wastewater obtained from Faraman industrial zone based in Kermanshah (Iran). The effects of operating conditions such as transmembrane pressure, cross flow velocity, temperature and time on water flux and rejection of impurities including COD by the membrane were elucidated. The aim was an improvement in membrane performance. The results indicate that most of the chemical substances are removed from the wastewater. In particular COD removal was increased from 64 to around 100% as temperature increased from 15 to $45^{\circ}C$. The complete COD removal was obtained at transmembrane pressure of 20 bars and cross flow velocity of 1.5 m/s. The treated wastewater may be reused for various applications including makeup water for cooling towers.

Reverse Osmosis and Nanofiltration Using the Disc-tube-module in the Purification of Landfill Leachate

  • Peters, Thomas A.
    • Proceedings of the Membrane Society of Korea Conference
    • /
    • 1995.06a
    • /
    • pp.27-38
    • /
    • 1995
  • Based on innovative membrane module concepts reverse osmosis and nanofiltration are going to become important instruments in environmental engineering. One example is the Disc-Tube-module and its application for the purification of landfill leachate. Currently over 45 different landfills are using this ROCHEM DT-module, in some cases combined with the high pressure reverse osmosis versions of this module, operating at up to 120 bar and 200 bar. This state of the art membrane technology and the DTF-module for nanofiltration, developed by ROCHEM on the basis of the DT-module and RO-systems for the purification of landfill leachate, make possible in hybrid processes permeate recovery rates of more than 97 % with concentration factors up to 40.

  • PDF

Application in Ultrafiltration and Reverse Osmosis Module Set with Acrylic Wastewater Pretreated by Coagulation-Filtration-Neutralization Process (응집-여과-중화 공정에 의해 전처리된 아크릴 폐수의 한외여과와 역삼투 모듈 조합 공정에의 적용)

  • Lee, Kwang-Hyun;Kang, Byung-Chul;Lee, Jong-Baek
    • Membrane Journal
    • /
    • v.18 no.1
    • /
    • pp.1-6
    • /
    • 2008
  • After membrane fouling factors in acrylic wastewater were minimized by pretreatment process accompanied with coagulation-filtration-neutralization, it was utilized in UF/RO process. After composing of ultrafiltration and reverse osmosis module set according to types and kinds of membrane, the separation characteristics were examined with the variation temperature and pressure using pretreated acrylic wastewater by membrane module sets. It was found that permeate flux of UF module in module set 4 was about two${\sim}$three times larger than that of UF module in module set 1. Final quantity of permeate from the module set 2 and module set 3 combined with tubular module was shown very good result. It was shown that the removal efficiency of TDS, T-N and COD was very low and was not dependent on the variation of temperature and pressure in all UF modules. The removal efficiency of TDS, T-N and COD was very excellent in RO module. Final water quality of acrylic wastewater was satisfied with effluent allowances limit and membrane module sets were ascertained to reuse wastewater.

Clarification and concentration of sugar cane juice through ultra, nano and reverse osmosis membranes

  • Jegatheesan, Veeriah;Shu, Li;Phong, Diep Dinh;Navaratna, Dimuth;Neilly, Adam
    • Membrane and Water Treatment
    • /
    • v.3 no.2
    • /
    • pp.99-111
    • /
    • 2012
  • The performance of ultrafiltration (UF) membranes with molecular weight cut off (MWCO) of 1000 and 3500 Da in clarifying sugar cane juice was investigated, as well as the performance of a nanofiltration (NF) membrane with MWCO of 200 Da and a reverse osmosis (RO) membrane in concentrating sugar cane juice. For both cases the sugar cane juice had been limed and partially clarified. The UF membranes were found to be effective at clarifying the sugar cane juice in terms of purity rise and reduction in turbidity, colour, starch and protein. A purity rise of approximately 6 was achieved by both UF membranes at trans-membrane pressures (TMP) from 15 to 25 bar. However, Brix reduction in the permeate was between 14.5 and 41.85% and 12.11 and 26.52% for 1000 Da and 3500 Da membranes respectively. For the 200 Da and RO membranes the Brix in the concentrate was increased from 7.65 to 12.3 after 3 hours of operation for the 200 Da membrane at a TMP of 10 bar, whilst the Brix in the concentrate was increased from 15.65 to 27.6 after 3 hours of operation for the RO membrane at a TMP of 35 bar. Overall, UF membranes were found to be unsuitable for clarification of sugar cane juice since significant amount of Brix is reduced in the permeate, whilst RO membranes were found to be effective for concentration of sugar cane juice.

Boron removal from model water by RO and NF membranes characterized using S-K model

  • Kheriji, Jamel;Tabassi, Dorra;Bejaoui, Imen;Hamrouni, Bechir
    • Membrane and Water Treatment
    • /
    • v.7 no.3
    • /
    • pp.193-207
    • /
    • 2016
  • Boron is one of the most problematic inorganic pollutants and is difficult to remove in water. Strict standards have been imposed for boron content in water because of their high toxicity at high concentrations. Technologies using membrane processes such as reverse osmosis (RO) and nanofiltration (NF) have increasingly been employed in many industrial sectors. In this work, removal of boron from model water solutions was investigated using polyamide reverse osmosis and nanofiltration membranes. RO-AG, RO-SG, NF-90 and NF-HL membranes were used to reduce the boron from model water at different operational conditions. To understand the boron separation properties a characterization of the four membranes was performed by determining the pure water permeability, surface charge and molecular weight cut-off. Thereafter, the effect of feed pressure, concentration, ionic strength, nature of ions in solution and pH on the rejection of boron were studied. The rejection of boron can reach up to 90% for the three membranes AG, SG and NF-90 at pH = 11. The Spiegler-Kedem model was applied to experimental results to determine the reflection coefficient of the membrane ${\sigma}$ and the solute permeability $P_s$.

Pretreatment of Acrylic Wastewater and Application of UF/RO Processes (Acrylic 폐수의 전처리 및 UF/RO공정의 적용)

  • 이광현
    • Membrane Journal
    • /
    • v.11 no.4
    • /
    • pp.152-160
    • /
    • 2001
  • The pretreatment for COD removal of acrylic wastewater and separation characteristics of ultrafiltration hollow fiber type module and reverse osmosis spiral wound type module with the variation of applied pressure and temperature were discussed. Thc optimum washing time of membranes was decided with long team operation and the degree of fouling was discussed with operating time. Permeate flux was decreased rapidly at 14 hrs and that of reverse osmosis membrane was indicated similarly. CaO find sand filter for the first step, neutralization process with treated acrylic wastewater as the second step, UF/RO processes were used as final strep. It was shown treat COD and TDS were below allowable discharge value with the result.

  • PDF

Auto Tuning of PID for RO System Using Immune Algorithm (면역 알고리즘을 이용한 RO 공정 PID 제어기의 자동 튜닝)

  • Kim, Go-Eun;Park, Ji-Mo;Kim, Jin-Sung;Kwon, O-Shin;Heo, Hoon
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.19 no.11
    • /
    • pp.1103-1109
    • /
    • 2009
  • In this paper, the control of a membrane used in reverse osmosis desalination plant by using immune algorithm(IA) is addressed. The proposed algorithm IA of auto tuning method can find optimal gains and compared with conventional Ziegler-Nichols tuning method. The results of computer simulation represent that the proposed IA shows a good control performances better than Ziegler-Nichols tuning method.

Comparisons of Reverse Osmosis and Pervaporation Membrane Processes. II. Experimental Interpretations. (역삼투와 투과 증발막 공정의 비교. II. 실험적 해석)

  • Rhim, Ji-Won;Bae, Seong-Youl;Kimura, Shoji;H
    • Membrane Journal
    • /
    • v.3 no.1
    • /
    • pp.35-39
    • /
    • 1993
  • Reverse osmosis(RO) and pervaporation(PV) membrane separation proceaes were compared with each other experimentally for the system of water-ethanol mixtures by using nylon 4 blended membranes. The separation effciencies of PV were better than those of RO as expected in previous paper covering the theoretical comparisons of both processes, however tbe permeabilities data showed erraerie results due to the membrane imperfections.

  • PDF