• Title/Summary/Keyword: Reverse EngineeringPoint Data

Search Result 83, Processing Time 0.026 seconds

Development of a 3D Shape Construction Software Using Unorganized Point Data (점 데이터를 이용한 3차원 형상의 구현을 위한 소프트웨어 개발)

  • 채희창
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.11 no.1
    • /
    • pp.1-9
    • /
    • 2002
  • Reverse engineering is an emerging technology to obtain CAD models from existing physical parts in the case that CAD models are not available or paras are changed an(1 modified so that new CAD models for final parts are necessary. Reverse engineering helps designers to quickly generate computer interpretable data from existing Physical objects So it is applying for field of Rapid Prototyping NC Processing CAE, Inspection and so on. The objective of this study is to develop the software that deals with unorganized point data and quickly obtains CAD model. In this paper, several models such as human\`s bone, car, are experimented by the proposed methods.

CAD Model Generation from Point Clouds using 3D Grid Method (Grid 방법을 이용한 측정 점데이터로부터의 CAD모델 생성에 관한 연구)

  • 우혁제;강의철;이관행
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2001.04a
    • /
    • pp.435-438
    • /
    • 2001
  • Reverse engineering technology refers to the process that creates a CAD model of an existing part using measuring devices. Recently, non-contact scanning devices have become more accurate and the speed of data acquisition has increased drastically. However, they generate thousands of points per second and various types of point data. Therefore, it becomes a major issue to handle the huge amount and various types of point data. To generate a CAD model from scanned point data efficiently, these point data should be well arranged through point data handling processes such as data reduction and segmentation. This paper proposes a new point data handling method using 3D grids. The geometric information of a part is extracted from point cloud data by estimating normal values of the points. The non-uniform 3D grids for data reduction and segmentation are generated based on the geometric information. Through these data reduction and segmentation processes, it is possible to create CAD models autmatically and efficiently. The proposed method is applied to two quardric medels and the results are discussed.

  • PDF

Efficient Digitizing in Reverse Engineering By Sensor Fusion (역공학에서 센서융합에 의한 효율적인 데이터 획득)

  • Park, Young-Kun;Ko, Tae-Jo;Kim, Hrr-Sool
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.18 no.9
    • /
    • pp.61-70
    • /
    • 2001
  • This paper introduces a new digitization method with sensor fusion for shape measurement in reverse engineering. Digitization can be classified into contact and non-contact type according to the measurement devices. Important thing in digitization is speed and accuracy. The former is excellent in speed and the latter is good for accuracy. Sensor fusion in digitization intends to incorporate the merits of both types so that the system can be automatized. Firstly, non-contact sensor with vision system acquires coarse 3D point data rapidly. This process is needed to identify and loco]ice the object located at unknown position on the table. Secondly, accurate 3D point data can be automatically obtained using scanning probe based on the previously measured coarse 3D point data. In the research, a great number of measuring points of equi-distance were instructed along the line acquired by the vision system. Finally, the digitized 3D point data are approximated to the rational B-spline surface equation, and the free-formed surface information can be transferred to a commercial CAD/CAM system via IGES translation in order to machine the modeled geometric shape.

  • PDF

Triangular Mesh Generation using non-uniform 3D grids (Non-uniform 3D grid를 이용한 삼각형망 생성에 관한 연구)

  • 강의철;우혁제;이관행
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.1283-1287
    • /
    • 2003
  • Reverse engineering technology refers to the process that creates a CAD model of an existing part using measuring devices. Recently, non-contact scanning devices have become more accurate and the speed of data acquisition has increased drastically. However, they generate thousands of points per second and various types of point data. Therefore. it becomes a important to handle the huge amount and various types of point data to generate a surface model efficiently. This paper proposes a new triangular mesh generation method using 3D grids. The geometric information of a part can be obtained from point cloud data by estimating normal values of the points. In our research, the non-uniform 3D grids are generated first for feature based data reduction based on the geometric information. Then, triangulation is performed with the reduced point data. The grid structure is efficiently used not only for neighbor point search that can speed up the mesh generation process but also for getting surface connectivity information to result in same topology surface with the point data. Through this integrated approach, it is possible to create surface models from scanned point data efficiently.

  • PDF

Segmentation of Measured Point Data for Reverse Engineering (역공학을 위한 측정점의 영역화)

  • 양민양;이응기
    • Korean Journal of Computational Design and Engineering
    • /
    • v.4 no.3
    • /
    • pp.173-179
    • /
    • 1999
  • In reverse engineering, when a shape containing multi-patched surfaces is digitized, the boundaries of these surfaces should be detected. The objective of this paper is to introduce a computationally efficient segmentation technique for extracting edges, ad partitioning the 3D measuring point data based on the location of the boundaries. The procedure begins with the identification of the edge points. An automatic edge-based approach is developed on the basis of local geometry. A parametric quadric surface approximation method is used to estimate the local surface curvature properties. the least-square approximation scheme minimizes the sum of the squares of the actual euclidean distance between the neighborhood data points and the parametric quadric surface. The surface curvatures and the principal directions are computed from the locally approximated surfaces. Edge points are identified as the curvature extremes, and zero-crossing, which are found from the estimated surface curvatures. After edge points are identified, edge-neighborhood chain-coding algorithm is used for forming boundary curves. The original point set is then broke down into subsets, which meet along the boundaries, by scan line algorithm. All point data are applied to each boundary loops to partition the points to different regions. Experimental results are presented to verify the developed method.

  • PDF

Selection and Allocation of Point Data with Wavelet Transform in Reverse Engineering (역공학에서 웨이브렛 변황을 이용한 점 데이터의 선택과 할당)

  • Ko, Tae-Jo;Kim, Hee-Sool
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.9
    • /
    • pp.158-165
    • /
    • 2000
  • Reverse engineering is reproducing products by directly extracting geometric information from physical objects such as clay model wooden mock-up etc. The fundamental work in the reverse engineering is to acquire the geometric data for modeling the objects. This research proposes a novel method for data acquisition aiming at unmanned fast and precise measurement. This is come true by the sensor fusion with CCD camera using structured light beam and touch trigger sensor. The vision system provides global information of the objects data. In this case the number of data and position allocation for touch sensor is critical in terms of the productivity since the number of vision data is very huge. So we applied wavelet transform to reduce the number of data and to allocate the position of the touch probe. The simulated and experimental results show this method is good enough for data reduction.

  • PDF

Delaunay triangulation for efficient reduction of measured point data (측정데이터의 효율적 감소를 위한 De Iaunay 삼각형 분할의 적용)

  • 허성민;김호찬;이석희
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2001.04a
    • /
    • pp.53-56
    • /
    • 2001
  • Reverse engineering has been widely used for the shape reconstruction of an object without CAD data and it includes some steps such as scanning of a clay or wood model, and generating some manufacturing data in an STL file. A new approach to remove point data with Delaunay triangulation is introduced to deal with the size problems of STL file and the difficulties in the operation of RP process. This approach can be used to reduce a number of measuring data from laser scanner within a specified tolerance, thus it can avoid the time for handing point data during modeling process and the time for verifying and slicing STL model during RP process. Developed software enables the user to specify the criteria for the selection of group of triangles either by the angle between triangles or the percentage of triangles reduced, and thus RP models with accuracy will be helpful to automated process.

  • PDF

A Basic Study on Data Structure and Process of Point Cloud based on Terrestrial LiDAR for Guideline of Reverse Engineering of Architectural MEP (건축 MEP 역설계 지침을 위한 라이다 기반 포인트 클라우드 데이터 자료 구조 및 프로세스 기초 연구)

  • Kim, Ji-Eun;Park, Sang-Chul;Kang, Tae-Wook
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.8
    • /
    • pp.5695-5706
    • /
    • 2015
  • Recently adoption of BIM technology for building renovation and remodeling has been increased in construction industry. However most buildings have trouble in 2D drawing-based BIM modeling, because 2D drawings have not been updated real situations continually. Applying reverse engineering, this study analysed the point cloud data structure and the process for guideline of reverse engineering of architectural MEP, and deducted the relating considerations. To active usage of 3D scanning technique in domestic, the objective of this study is to analyze the point cloud data processing from real site with terrestrial LiDAR and the process from data gathering to data acquisition.

Large Point Cloud-based Pipe Shape Reverse Engineering Automation Method (대용량 포인트 클라우드 기반 파이프 형상 역설계 자동화 방법 연구)

  • Kang, Tae-Wook;Kim, Ji-Eum
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.3
    • /
    • pp.692-698
    • /
    • 2016
  • Recently, the facility extension construction and maintenance market portion has increased instead of decreased the newly facility construction. In this context, it is important to examine the reverse engineering of MEP (Mechanical Electrical and Plumbing) facilities, which have the high operation and management cost in the architecture domains. The purpose of this study was to suggest the Large Point Cloud-based Pipe Shape Reverse Engineering Method. To conduct the study, the related researches were surveyed and the reverse engineering automation method of the pipe shapes considering large point cloud was proposed. Based on the method, the prototype was developed and the results were validated. The proposed method is suitable for large data processing considering the validation results because the rendering performance standard deviation related to the 3D point cloud massive data searching was 0.004 seconds.

Study on Segmentation of Measured Data with Noise in Reverse Engineeing (역공학에서의 노이즈가 포함된 측정데이터의 분할에 관한 연구)

  • Lee, Seok-Hui;Kim, Ho-Chan;Heo, Seong-Min
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.3
    • /
    • pp.560-569
    • /
    • 2002
  • The segmentation has been performed to the data of good quality in most cases, so the adoption of previous segmentation theory to the measured data with a laser scanner does not produce good result because of the characteristics of the data with noise component. A new approach to perform the segmentation on the scanned data is introduced to deal with problems during reverse engineering process. A triangular net is generated from measured point data, and the segmentation on it is classified as plane, smooth and rough segment. The segmentation result in each segment depends on the user-defined criteria. And the difference of the segmentation between the data of good quality and the data with noise is described and analyzed with several real models. The segment boundaries selected are used to maintain the characteristics of the parts during modeling process, thus they contribute to the automation of the reverse engineering.