• Title/Summary/Keyword: Reverse Engineering Technique

Search Result 210, Processing Time 0.03 seconds

Modeling of functional surface using Polynomial Regression (다항식회귀분석을 이용한 기능성곡면의 모델링)

  • 윤상환;황종대;정윤교
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2002.10a
    • /
    • pp.376-380
    • /
    • 2002
  • This research presents modeling of a functional surface which is a constructed free-formed surface. The modeling introduced in this paper adopts polynomial regression that is utilizing approximating technique. The measured data are obtained from measuring with Coordinate Measuring Machine. This paper introduces efficient methods of Reverse Engineering using Polynomial Regression.

  • PDF

Ultraviolet Photodetection Properties of ZnO/Si Heterojunction Diodes Fabricated by ALD Technique Without Using a Buffer Layer

  • Hazra, Purnima;Singh, S.K.;Jit, S.
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.14 no.1
    • /
    • pp.117-123
    • /
    • 2014
  • The fabrication and characterization of a Si/ZnO thin film heterojunction ultraviolet photodiode has been presented in this paper. ZnO thin film of ~100 nm thick was deposited on <100> Silicon (Si) wafer by atomic layer deposition (ALD) technique. The Photoluminescence spectroscopy confirms that as-deposited ZnO thin film has excellent visible-blind UV response with almost no defects in the visible region. The room temperature current-voltage characteristics of the n-ZnO thin film/p-Si photodiodes are measured under an UV illumination of $650{\mu}W$ at 365 nm in the applied voltage range of ${\pm}2V$. The current-voltage characteristics demonstrate an excellent UV photoresponse of the device in its reverse bias operation with a contrast ratio of ~ 1115 and responsivity of ~0.075 A/W at 2 V reverse bias voltage.

A Comparative Study of Feature Extraction Algorithm for unKnown Protocol Classification (비공개 프로토콜 분류를 위한 특징 추출 알고리즘 비교 연구)

  • Jung, YoungGiu;Jeong, Chang-Min
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.19 no.5
    • /
    • pp.251-255
    • /
    • 2019
  • On today, Protocol reverse-engineering technique can be used to extract the specification of an unknown protocol. However, there is no standardized method, and in most cases, the extracting process is executed manually or semi-automatically. If the information about the structure of an unknown protocol could be acquired in advance, it would be easy to conduct reverse engineering. the feature extraction is an important step in unknown protocol classification. However, in this paper, we present a comparison several feature extraction techniques and suggests a method of feature extraction algorithm for recognizing unknown protocol. In order to verify the performance of the proposed system, we performed the training using eight open protocols to evaluate the performance using unknown data.

A Technology on Reverse Engineering of Structure Using 3D Scanner (삼차원 스캐너를 이용한 구조물의 역설계 기법)

  • Yang, In-Tae;Shin, Moon-Seung;Acharya, Tri Dev
    • Journal of Industrial Technology
    • /
    • v.35
    • /
    • pp.47-53
    • /
    • 2015
  • Recent extreme weather events and natural disasters are causing rapid aging of the ancient structures with cultural value. It has threatened the safety and management. The construction design documents are not kept for such long time. Even if they are, they seem to be mismatched with the design structures due to corrosive effects. For these reasons, Korea has been facing difficulties in maintenance, reengineering and safety evaluation. In this study, three dimensional point cloud surface of bobsleigh is obtained using 3D LiDAR scanner. The obtained structure is compared with the original design and found to be highly accurate. The study shows the application of reverse engineering technique and its potential use for other civil structures.

  • PDF

Simulation of Sintering for the Complex Ceramic Bodies by NASTRAN

  • Lee, Sang-Ki;Kim, Hyung-Jong;Lee, June-Gunn
    • The Korean Journal of Ceramics
    • /
    • v.5 no.3
    • /
    • pp.235-238
    • /
    • 1999
  • In a ceramic green body, some degree of nonuniformity in density always presents. These differences in green density will appear as nonuniform shrinkage after sintering takes place. For the complex ceramic bodies with various curves and angles, therefore, it is quite difficult to foresee the final dimensions precisely after sintering. This simulation study shows that, considering the sintering process as a thermal shrinkage phenomenon, the use of NASTRAN enables to predict the precise shape of a sintered body. Based on this result, 'the reverse engineering technique' has been developed that can unfold the exact dimensions of a green body to have the desired shape after sintering. This approach will provide a simple and useful tool for ceramic engineers to fabricate complicate bodies with tight dimensional tolerances.

  • PDF

Optimization cutting speed in high speed ball end milling (고속 볼 엔드밀 가공에서 절삭속도 최적화)

  • 김경균;강명창;정융호;이득우;김정석
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2001.04a
    • /
    • pp.895-898
    • /
    • 2001
  • This paper presents an optimization cutting speed(OCS) program developed to improve the machining precision and tool life in high speed machining using ball end milling. This program optimized the cutting speed that is changing at any time in free surface machining of an automobile part like a connecting load die. The technique of optimization cutting speed makes the CAD/CAM-generated NC code go through a reverse post process, conducts cutting simulation, and obtain the effective tool diameter of the ball end milling. Then it changes the spindle revolution to within the range of critical cutting speed fit for the material of the workpieces depending upon the effective tool diameter. In this study, the machining precision and tool life were compared for the two connecting load dies processed using the general cutting method and the proposed optimization cutting speed technique, respectively.

  • PDF

A Software Complexity Measurement Technique for Object-Oriented Reverse Engineering (객체지향 역공학을 위한 소프트웨어 복잡도 측정 기법)

  • Kim Jongwan;Hwang Chong-Sun
    • Journal of KIISE:Software and Applications
    • /
    • v.32 no.9
    • /
    • pp.847-852
    • /
    • 2005
  • Over the last decade, numerous complexity measurement techniques for Object-Oriented (OO) software system have been proposed for managing the effects of OO codes. These techniques may be based on source code analysis such as WMC (Weighted Methods per Class) and LCOM (Lack of Cohesion in Methods). The techniques are limited to count the number of functions (C++). However. we suggested a new weighted method that checks the number of parameters, the return value and its data type. Then we addressed an effective complexity measurement technique based on the weight of class interfaces to provide guidelines for measuring the class complexity of OO codes in reverse engineering. The results of this research show that the proposed complexity measurement technique ECC(Enhanced Class Complexity) is consistent and accurate in C++ environment.

Measurement Technique of Membrane Fouling in Processes Utilizing Ion-Conducting Polymer Membranes (이온전도성 고분자막 활용 공정에서의 막 오염 현상 측정 기술)

  • Han, Soo-Jin;Park, Jin-Soo
    • Membrane Journal
    • /
    • v.27 no.5
    • /
    • pp.434-440
    • /
    • 2017
  • Electrical impedance spectroscopy is used to detect membrane fouling in-situ in reverse electrodialysis. The impedance data for the AMX membrane being fouled in the reverse electrodialysis are plotted and analyzed by Nyquist and admittance method. The meaningful graphical analyses for the fouling phenomena could be done by both Nyquist and admittance method. In addition, the unstable initial fouling stage was identified by the admittance data with high standard deviation, and the structural change of the fouling layer formed at the surface of anion-exchange membranes with the operation time of reverse electrodialysis was also detected.

Optimal Design of PV Module with Bypass Diode to Reduce Degradation due to Reverse Excess Current

  • Jung, Tae-Hee;Kang, Gi-Hwan;Ahn, Hyung-Keun
    • Transactions on Electrical and Electronic Materials
    • /
    • v.15 no.5
    • /
    • pp.279-283
    • /
    • 2014
  • In this paper, we present an economical and practical standard to install a bypass diode in a thin-film PV module. This method helps to reduce heat generation and to prevent module degradation due to excess current from reverse bias. The experimental results confirm that for different numbers of solar cells, there is a relation between the excess reverse current and the degradation of solar cells in a-Si:H modules. The optimal number of solar cells that can be connected per bypass diode could be obtained through an analysis of the results to effectively suppress the degradation and to reduce the heat generated by the module. This technique could be expanded for use in high power crystalline Si PV modules.

Using Artificial Neural Network in the reverse design of a composite sandwich structure

  • Mortda M. Sahib;Gyorgy Kovacs
    • Structural Engineering and Mechanics
    • /
    • v.85 no.5
    • /
    • pp.635-644
    • /
    • 2023
  • The design of honeycomb sandwich structures is often challenging because these structures can be tailored from a variety of possible cores and face sheets configurations, therefore, the design of sandwich structures is characterized as a time-consuming and complex task. A data-driven computational approach that integrates the analytical method and Artificial Neural Network (ANN) is developed by the authors to rapidly predict the design of sandwich structures for a targeted maximum structural deflection. The elaborated ANN reverse design approach is applied to obtain the thickness of the sandwich core, the thickness of the laminated face sheets, and safety factors for composite sandwich structure. The required data for building ANN model were obtained using the governing equations of sandwich components in conjunction with the Monte Carlo Method. Then, the functional relationship between the input and output features was created using the neural network Backpropagation (BP) algorithm. The input variables were the dimensions of the sandwich structure, the applied load, the core density, and the maximum deflection, which was the reverse input given by the designer. The outstanding performance of reverse ANN model revealed through a low value of mean square error (MSE) together with the coefficient of determination (R2) close to the unity. Furthermore, the output of the model was in good agreement with the analytical solution with a maximum error 4.7%. The combination of reverse concept and ANN may provide a potentially novel approach in designing of sandwich structures. The main added value of this study is the elaboration of a reverse ANN model, which provides a low computational technique as well as savestime in the design or redesign of sandwich structures compared to analytical and finite element approaches.